What is a fiber optic coupler?

Fiber optic coupler is used to split the fiber optic light into several parts at a certain ratio. fiber optic coupler are important passive components used in FTTX networks. A fiber-optic splitter is a device that takes a single fiber optics signal and divides it into multiple signals. Fiber optic is a type of technology that uses an optical signal instead of an electrical one to send data from one place to another. The cable is made either of glass or plastic coated in plastic, instead of the copper wire that was commonly used in the past. But two kinds of fiber splitters are popular used, one is the traditional fused type fiber optic coupler (FBT coupler), which features competitive prices; the other is PLC fiber optic coupler, which is compact size and suit for density applications. Both of them have its advantages to suit for different requirement. The use of fiber optic technology has become increasingly popular for several reasons. Fiber optic cables are much less sensitive to electrical interference, marking them more reliable than older types of cabling. They are also able to carry very large amounts of data in comparison with that older systems can handle. This makes them very efficient, despite the facts that there are some drawbacks to the system. The cables  require a thicker covering to protect the optical cables and they also need to have repeaters installed to boost the signal strength in order for the system to work, two hindrances to the use of this technology.

Despite the limitations, fiber optics technology is in use for both home and commercial applications. The most common type of fiber optic coupler splits the output evenly, with half the signal going to one leg of the output and half going to the other. It’s possible to get splitters that use a different split ratio, putting a larger amount of the signal to one side of the splitter than the other. The Splitters are identified with a number that represents the signal division, such as 50/50 if the split is even, or 80/20 if 80% of the signal goes to one side and only 20% to the other.

Some types of the fiber optic coupler are actually able to work in either direction. This means that if the device is installed in one way, it acts as a splitter and divides the incoming signal into two parts, sending out two separate outputs. If it is installed in reverse, it acts as a coupler, taking two incoming signals and combing them into a single output. Not every fiber optic coupler can be used this way, but those that can are labeled as reversible or as coupler/splitters.

Fiber Optic Collimator Lens Assembly Global Market Forecast

a leading market research & technology forecast consultancy addressing the fiber optics communications industry, today announced the release of a new market forecast of the global market consumption and technology trends of commercial (non-military) fiber optic collimating lens assemblies, which are used in optical communication applications.

The market study covers single lens assemblies, 2-12 lens arrays, and arrays with more than 12 lenses. Both of the lens array categories are forecast with strong growth rates of more than 45% per year (2013-2018).  Single lens fiber optic collimator assemblies hold the global market share lead in the selected optical communication applications covered in the ElectroniCast study.

“Collimator lenses (and lens assemblies) are used in a variety of photonic products; however this market study forecasts the use of micro-sized collimator lens assemblies, which are used specifically in optical communication components/devices. Fiber optic collimator lens assemblies serve as a key indicator of the growth of the fiber optic communication component industry,” said Stephen Montgomery, Director of the Fiber Optic Component group at the California-based consultancy.

ElectroniCast defines lens assemblies as lenses (one or more), which are attached to an optical fiber or fitted/attached into (or on) a planar waveguide/array substrates or other device(s) for the purpose of collimating light for optical fiber communication.

The global consumption of fiber optic collimator lens assemblies, which are used in commercial optical communication applications, reached $264.2 million last year in 2013 and is forecast to reach $298.4 million this year (2014), an increase of 12.9%.    The American and APAC regions are forecast to remain relatively close together in relative consumption value market share.  The Europe, Middle East and Africa regional segment (EMEA) is forecast with the fastest average annual growth rate during the forecast period.  Market forecast data in the ElectroniCast report refers to consumption (use) for a particular calendar year; therefore, this data is not cumulative data.

Fiber optic collimator lens assemblies are widely used to covert a divergent output laser beam from a fiber or waveguide into an expanding beam of parallel light; therefore, they are used in a variety of optical communication components, such as: modulators, attenuators, transmitters, pump laser modules, switches/optical cross connects, wavelength selective switches, ROADMs, isolators, circulators, expanded-beam connector assemblies, optical filter modules, DWDM, tunable filters, optical sensors, optical signal processing, integrated/hybrid packaged modules, and other active and passive components and devices.

What Is a Fiber-Optic Multiplexer?

A fiber-optic multiplexer is a device that processes two or more light signals through a single optical fiber, in order to increase the amount of information that can be carried through a network. Light wavelengths are narrow beams that ricochet through reflective optical tubing, sometimes over long distances, to provide instantaneous electronic signal processing at the speed of light. Multiplexers work by increasing a fiber’s transmission capacity using different techniques and light source technologies. When the signal arrives at its destination, a demultiplexer separates the data streams. Using a multiplexer also allows data to be sent farther, more securely, and with less electromagnetic and radio frequency interference.

Also known as a mux, the fiber-optic multiplexer saves time and cost by squeezing more information through the optical network pathway. It is possible to split signals by varying the schedule or period of each transmission. Time Division Multiplexing (TDM) combines multiple signals by rapidly alternating between them so that only one is transmitting at any given time. Statistical Time Division Multiplexing (STDM) assigns each signal a specific time slot in order to optimize bandwidth usage. Further techniques include divisions of wavelength and frequency.

Wavelength Division Multiplexing (WDM) utilizes the total available pass band of an optical fiber. It assigns individual information streams different wavelengths, or portions of the electromagnetic spectrum. Similarly, Frequency Division Multiplexing (FDM) assigns each signal a different frequency. Carrier frequencies contain the signal while unused guard frequencies provide buffering to reduce interference. This helps minimize audible and visual noise and preserves the integrity of the original signal throughout the network.

Fiber-optic multiplexer technology serves single-mode and multimode optical fibers with multichannel rack mount or standalone units. This makes mixing channels with different configurations possible for a range of interface combinations. These devices provide stronger, more reliable transmissions in areas that have a lot of electromagnetic, radio frequency, or lightning interference.

As technology improves and information needs grow to fill the capacities of existing networks, equipment such as the fiber-optic multiplexer lessens the need to upgrade the fiber-optic infrastructure itself. Multiplexers permit new configurations of transmission protocols by increasing the amount of wavelengths or frequencies of light signals. By upgrading repeaters and terminal equipment, existing network transmission capacity can expand with demand.

Used by cellular carriers, Internet service providers, public utilities, and businesses, fiber-optic multiplexer technology extends the reach and power of telecommunications technologies. Network management systems allow for system service and maintenance, and provide for security, fault management, and system configuration. With advantages like lower costs and longer life expectancies, current fiber-optical networks are aided by improvements in multiplexing technology, and may provide light speed data transmission well into the future.

LC Connector and LC Attenuator

A fiber optic connector terminates the end of an optical fiber and enables quicker connection and disconnection than splicing. The fibers are mechanically coupled and aligned to ensure that light can pass.

There has been many different connectors introduced through the development of fiber optic components previously many years. A lot of companies and individuals happen to be trying to improve the options that come with certain connectors to be able to gain control of the fiber optic industry, but only few have been successful. As technology increases, various fiber optic components have become less expensive.

There are various color codes for connectors and they have changed throughout the years. In early stages of fiber optic history, orange, black or grey represented multimode connectors and yellow represented single mode. These original codes became complicated with the introduction of metallic connectors so colored boots were developed, like FC and ST. Now, beige boots stand for multimode, blue means single mode and APC or angled connectors are represented by green boots.

The LC connector is a universal connector. It is available in simplex and duplex configurations and is half how big the SC and utilizes a 1.25mm ferule. The LC is highly favored for single mode and is easily terminated with an adhesive. They’re actively replacing the SC connectors in corporate environments due to their smaller size.

Built on style with LC, LC attenuators really are a combination of a connector on a definite end, as well as an adapter on the other. This enables so that it is “plugged-in” to just about any LC adapter. The assembly contains a ferrule that’s accessible in standard Polish connectors (PC) and 8 degree angle Polish (APC). They’re backward suitable for existing transmission equipment, while the APC attenuators provide superior reflection required for high power and analog equipment. LC fiber optic attenuators are designed to provide horizontal spectral attenuation over the full spectrum vary from 1280nm to 1624nm. This way the LC attenuators expand the capability of optical networks by enabling using the E-band (1400-nm window) for optical transmission.

LC fiber optic attenuator is a passive device accustomed to reduce light signal intensity without significantly changing the waveform itself. It provides a type of metal-ion doped fiber which reduces the noiseless signal because it passes through. This process of attenuation allows for higher performance than fiber splices or fiber offsets or fiber clearance, which function by misdirecting rather than absorbing the joyful signal. This is often a requirement in Dense Wave Division Multiplexing (DWDM) and Erbium Doped Fiber Amplifier (EDFA) applications in which the receiver can’t accept the signal produced by a high-power light source.

LC fiber optic attenuators are key in controlling manipulating the electricity of an optical path in fiber optic telecommunication systems. LC Build-on fiber optic attenuators are used to reduce excess optical power from the transmitter that can result in over-saturation of the receiver.

These optical attenuators feature simple and rugged structure utilizing ion doped fiber because the attenuating material. They can be placed directly on the active equipment and therefore are able to withstand over 1W of extraordinary power light exposure for longer periods of time, which makes them well-suited to EDFA and other high-power applications.

Some Info About Fiber Optic Multiplexer Technology

In the long-distance optical fiber transmission, the fiber cables have a small effect on the optical signal transmission, the transmission quality of optical fiber transmission system mainly depends on the Optical Fiber Multiplexer’ quality, because optical multiplexer is responsible for electrical/optical and optical/electric conversion and optical transmitting and receiving. Optical fiber multiplexer as terminal equipment of transmission optical signal, usually used in pairs, divided into optical receiver and optical transmitter, optical transmitter is used to convert electrical signals into optical signals to realize electrical/optical conversion, and the optical signal input optical fiber transmission. Optical receiver is used to restore a in the optical fiber for optical signal into electrical signal to realize optical/electric conversion. It’s fit and unfit quality directly affects the whole system, so you need to know something about the performance and application of the fiber optic multiplexers, it can help you better configuration and procurement.

What is video multiplexer?

Fiber optic video multiplexer is used to transform video signals to fiber optic signals, it is analog fiber optic video multiplexer and digital video multiplexer, the digital one is more and more used and it is the popular model in current market. This product is generally used in security applications to control and monitor the video camera signals.

Fiber Optic Multiplexer Technology:

Fiber optic multiplexer technology serves single-mode and multimode optical fibers with multichannel rack mount or standalone units. Multiplexers aren’t only for connecting multiple devices across a network. Multiplexers are also commonly used to distribute data from a SONET core, allowing for the distribution of DS-1, DS-3, and other circuit mode communications to several devices throughout a network. Again, this allows for multiple devices to share an expensive resource.

Used by cellular carriers, Internet service providers, public utilities, and businesses, fiber optic multiplexer technology extends the reach and power of telecommunications technologies. Network management systems allow for system service and maintenance, and provide for security, fault management, and system configuration. With advantages like lower costs and longer life expectancies, current fiber-optical networks are aided by improvements in multiplexing technology, and may provide light speed data transmission well into the future. Multiplexed systems also simplify system upgrades since numbers of channels and channel bandwidth is a function of the electronics rather than the transmission line or components.

Feature Of Optical Multipexer:

fiber-mart.com fiber optic video multiplexer adopts the international advanced digital video and optical fiber transmission technology, these fiber optic multiplexers are various models and can be custom made according to customers’ requirement. Our products can transmit from 1 channel video signal to max 64 channel video signals in different optional distances. They can be with optional audio channel and reverse data channel. Interfaces can be RS232, RS422 or RS485. Fiber optic ports are typical FC, with SC or ST optional. The fiber optic video multiplexers are single mode types and multimode types, used with different kinds of optical fiber lines. We provide some types of optical multiplexers, including video multiplexers, video & data multiplexers, video & audio multiplexers, video & data & audio multiplexers, PDH multiplexer, and we supply optical multiplexer in different channels, such as 1, 2, 4, 8, 16, 24, 32 channels.

Importance of Reestablishing Fiber Connections Effectively

by http://www.fiber-mart.comFiber Optic cables offer a business many benefits for safe, fast installations with higher bandwidth frequencies. Fiber optic cables provide extreme pull tensions up to 600 lbs and a bend radius equal to coax cables.  If loss of fiber does occur it can result in disrupted communications and negative effects to local businesses. Review the steps below in order to repair any tainted connections quickly and effectively. Making a plan of how to respond to any cable failure is a great idea. Have questions answered ahead of time such as: Do we have the proper equipment if a loss occurs? Who will have proper training and materials to fix the issue? How will we know if the issue occurs? How quickly do we want to be able to resolve any issues? Important Factors to Restoring a proper connection effectively 1) Documentation- Producing accurate documentation during the installation process and making updates is critical. Start with manufacturer data/tech sheets, review every component and contact for quick restoration. Example: Having a record of how the fibers were installed as well as photos/drawings to quickly locate where the problem lies.  2) Proper Testing Equipment- To troubleshoot any connection start at the receiver and measure the optical power of the cable. If power levels are showing correctly the transmitter is properly working and the fiber within the cable has not be tainted. However, if the power is bad then there could be an error within the transmitter.  If all fibers are at total failure then the cable has either been broken, split or cut in some way. To determine this use a  laser light beam to show visibly where the cable has been damaged. Once the issue is located remove at least 10 m from either side of the cable break and test the remaining length for damage. Prep the cable and splice the fibers together to restore critical service as a short-term fix and have the system shut down at a later date to permanently fix the damaged cables. 3) Repair- Fixing the damaged cable requires proper tools and trained technicians. Tooling will include splicing and termination. Generally, cut cables can be spliced or reinstalled if there is an excessive cable that was kept from the initial install. To make sure your fibers are installed correctly, review our complete field fiber kit to ensure proper installation.  West Penn Wire’s Complete Field Kit Includes:  Field Clever VFL Visual Fault Locator with Adapter cords (FI-4283) Fiber Stripper (FI-3151) Support Handle with Adapters (FI-4289) Tweezers Scissors Safety Glasses Waste Bottle Installation Guide Refurbishing materials