The Introduction of Optical Power Meter


An Optical Power Meter typically is aware of as Fiber optical electricity meter is a gadget that used to measure the absolute optical sign and relate fiber optic loss. The time period generally refers to a gadget for trying out common energy in fiber optic systems. Fiber optical strength meter is a device for telecommunication and CATV network. Optical energy meter consists of a calibrated sensor, measuring amplifier and display. The sensor especially consists of a photodiode chosen for the gorgeous vary of wavelengths and energy levels. On the show unit, the measured optical electricity and set the wavelength are displayed. Power meters are calibrated the usage of a traceable calibration popular such as a NIST standard.

When to Use Optical Power Meter?
When you set up and terminate fiber optic cables, you want to take a look at them. A check must be performed for every fiber optic cable plant for three major areas: continuity, loss, and power. In order to do this, you’ll want a fiber optic electricity meter.

How to Use Optical Power Meter?
When you measure fiber optic electricity with a electricity meter, you have to connect the meter to the cable. Turn on the supply of power, and view the meter’s measurement. Compare the meter dimension with the unique right energy for that precise device to make positive it have acceptable energy now not too lots or too little . Correct strength dimension is so essential to fiber optic cables due to the fact the gadget works comparable to electric powered circuit voltage, and the energy have to be simply the proper quantity to work properly.

Classification of Optical Power Meter
There are two sorts of Optical Power Meter: Ordinary Optical Power Meter and PON Optical Power Meter. Ordinary optical energy meter measures the optical strength in the fiber link, generally an absolute electricity cost 850/1300/1310/1490/1550/1625nm optical wavelength. While PON Optical Power Meter is extra appropriate for measuring the fiber to the domestic (FTTH) networks. Specific measurement: PON Optical Power Meter can ship three wavelengths from a single laser output port (1310 nm, 1490 nm, 1550 nm), of which 1310nm can measure upstream transmission direction, 1490 nm and 1550 nm measure downstream direction. Upstream related with your add data, downward is down load data.

Tips for Selection and Operation

Choose the excellent probe kind and interface type.
Evaluation of calibration accuracy and manufacturing calibration procedures, and your fiber and connectors to in shape the required range.
Make positive the kind and the vary of your dimension and show decision is consistent.
With on the spot impact db insertion loss measurements.
Wear eye safety when working with high-power cables. Even with low-power layouts, it’s sensible to test the connectors with your energy meter earlier than looking.

The Benefit and Challenge of Patch Panel


Patch panel is undoubtedly an essential component in cabling systems as it provide a simple, neat and easy-to-manage solution. For example, if you want to wire a network system that includes multiple wall ports, patch panels will not only allow you to terminate cable elements, but the signal to be connected to the final destination. No matter how big or small your business infrastructure is, patch panel is indispensable. So what is a patch panel? What are the exact benefits of using fiber optic patch panel? This article will provide some detailed information about the benefits and challenges of them.

What Is A Patch Panel?

A patch panel is, in fact, an array of ports on one panel used to connect and manage incoming and outgoing LAN cables. The following image shows a 128 fibers MTP to LC/UPC OM4 1U 40GB QSFP+ Breakout Patch Panel. Each ports of patch panels connect fiber jumper cables to another port located elsewhere in your building. Circuits in an enterprise network can be easily rearranged by plugging and unplugging respective patch cords. Furthermore, patch panel provides a single location for all input jacks, which greatly simplifies the troubleshooting problems.

Patch panels are usually attached to network racks, either above or below network switches and take up 1U or 1.75 inches of space. Patch cords connect the ports in the patch panel to ports in the network switch, which creates permanent port connections to the switch that won’t be interrupted during moves, adds and changes (MACs). Based on different standards, there are different types of patch panels. For instance, 48-port, 24-port and 12-port patch panels divided by the number of ports, or the more specific patch panels—Cat 5E, Cat 6, Cat 6A and Cat 7 cables. Since you have a basic understanding of patch panels, let’s move on the the next part.

The advantage of using a patch panel is that it allows manual monitoring, testing, switching, routing, and other maintenance to be handled quickly because the cables in the front that connect to the more permanent cables in the back are configured and made so that changes can be made quickly and easily when needed.

The Challenge

With several patch panels available for sale, network users usually feel puzzled to select a patch panel solution with the features and capacity to meet their current needs, as well as the flexibility and scalability to adapt to and grow with the future needs. As noted before, patch panels can be divided into several types. According to different cable type, there are copper and fiber patch panels, which will be introduced in the next part.

Copper or Fiber Patch Panel?

A Patch panel can be connected with either fiber or copper cabling. The primary role of fiber patch panel is to direct signal at a required speed. It is the common sense that fiber is much faster than copper, and fiber patch panels are more expensive.

Structurally, copper panels have the 110-insulation displacement connector style on one side and 8-pin modular ports on the other. Wires coming into the panel are therefore terminated to the insulation displacement connector. On the opposite side, the 8-pin modular connector plugs into the port which corresponds to the terminated wires. With the copper panel, each pair of wires has an independent port. The following image shows the 48 Ports Shielded(STP) Cat6 Feed-Through 2U Gigabit Ethernet Patch Panel.

Optical Switch and Their Working

 Need of optical fiber amplifiers 

An optical amplifier solves the traditional distance problem as in anylong-distance telecommunication system such as a trans-Atlantic link. Due to optical signals traveling through the fiber, the signals become weaker in power. The farther you go, the signals become weaker till it gets too weak to be reliably detected.

With the help of fiber amplifiers fiber optic communication systems solve this problem along the way.

An optical fiber amplifier is an optical device purely. It never converts the incoming optical signal to an electronic signal at all. You can even call it an in-line laser. Dozens of optical channels can be simultaneously amplified by an optical fiber amplifier as they separately do not convert each channel into electronic signals. The optical switch isalso useful.

Optical fiber amplifiers and how do they work

An optical fiber amplifier is a section of optical fiber that with a rare-earth element such as erbium or praseodymium is doped.

By high power light (pump laser) the atoms of erbium orpraseodymium can be pumped into an excited state. From the high power levelexcited state into low power level stable state the erbium atoms will jump, and at the same time, they release their energy in the form of emitted light photons. Same as the input optical signal, the emitted photons have the same phase and wavelength, thus amplify the optical signal.

For an optical fiber communication system, this is a very convenient form of the amplifier as it is an in-line amplifier and it eliminates the requirement to do the optical-electrical and electrical-optical conversion process.

For the operation of fiber amplifiers, the pump laser wavelengths and the corresponding optical signal wavelengths are keyparameters. These wavelengths rely on the type of rare-earth element doped in the fiber and also on the composition of the glass in the fiber.

Gain is an important term in understanding fiber amplifier sand fiber adapter. The amplification per unit length of fiber is measured by gain. Gain usually depends on both the materials and the operating conditions, and for all materials, it varies with wavelength.



OTDR(光時間領域反射率計)は、新しく取り付けられたファイバーリンクをテストし、ファイバーリンクに存在する可能性のある問題を検出するために使用されます。その目的は、光ファイバーリンク上の任意の場所で要素を検出、特定、および測定することです。 OTDRは、リンクの一方の端にのみアクセスする必要があり、1次元レーダーシステムのように機能します。



さまざまなテストと測定のニーズに対して、多数のOTDRモデルが存在します。それでは、適切なモデルを選択するにはどうすればよいでしょうか。 OTDRの仕様とアプリケーションを包括的に理解することは、選択を行うのに役立ちます。さらに、特定のニーズに基づいて、OTDRを探す前に次の質問に答える必要があります。






-それはOTDRのダイナミックレンジを参照します。トレース上にあるFOSCと接続の数を把握し、ケーブル自体からのdB / km損失を追加することで、必要性を計算できます。










OTDRは、光インフラストラクチャの保守とトラブルシューティングに不可欠な光ファイバーテスターです。 OTDRを選択するときは、最初にOTDRが使用されるアプリケーションを把握し、次にOTDRの仕様をチェックしてアプリケーションに適しているかどうかを確認します。そして、この記事で述べた要素を考慮することを忘れないでください。あなたがあなたの決定をすることを躊躇するとき、それが助けになることを願っています。


 Fiber optic attenuators are used in applications where the optical signal is too strong and needs to be reduced.

For example, in a multi-wavelength fiber optic system, you need to equalize the optical channel strength so that all the channels have similar power levels. This means to reduce stronger channels’ powers to match lower power channels. 

Another example is when the received optical power is so strong that it saturates the receiver, you need an attenuator to reduce the power so the receiver can detect the signal correctly.

This picture shows an example of a fixed optical attenuator. The attenuation level is fixed at 5 dB, which means it reduces the optical power by 5dB. This attenuator has a short piece of fiber with metal ion doping that provides the specified attenuation.

There are many different mechanisms to reduce the optical power, this picture shows another mechanism used in one type of variable attenuator. Here variable means the attenuation level can be adjusted, for example, it could be from 1 dB up to 20dB.

In this example, the light from the input fiber is expanded into a larger beam by the first collimating lens, then a blocking device, which could be a neutral density filter, is inserted into the light path to partially block the light, so only part of the light can pass through. Then the second collimating lens is used to focus the light back into the output fiber. When you move the blocking device inward or outward, you get different attenuation levels.

Fiber optic attenuators are usually used in two scenarios.

The first case is in fiber optic power level testing. Attenuators are used to temporarily add a calibrated amount of signal loss in order to test the power level margins in a fiber optic communication system.

In the second case, attenuators are permanently installed in a fiber optic communication link to properly match transmitter and receiver optical signal levels.

Optical attenuators are typically classified as fixed or variable attenuators.

Fixed attenuators have a fixed optical power reduction number, such as 1dB, 5dB, 10dB, etc.

Variable attenuators’ attenuation level can be adjusted, such as from 0.5 dB to 20dB, or even 50dB. Some variable attenuators have very fine resolution, such as 0.1dB, or even 0.01dB.

This slide shows many different optical attenuator designs.

The female to female fixed attenuators work like a regular adapter. But instead of minimizing insertion loss, it purposely adds some attenuation.

The female to female variable attenuators are adjustable by turning a nut in the middle. The nut adjusts the air gap in the middle to achieve different attenuation levels.

The male to female fixed attenuators work as fiber connectors, you can just plug in your existing fiber connector to its female side.

The in-line patch cable type variable attenuators work as regular patch cables, but your can adjust its attenuation level by turning the screw.

For precise testing purposes, engineers have also designed instrument type variable attenuators. These instrument type attenuators have high attenuation ranges, such as from 0.5 dB to 70dB. They also have very fine resolution, such as 0.01dB. This is critical for accurate testing.

Singlemode und Multimode von Glasfaser-Splittern

Der einfachste Koppler, Glasfaser-Splitter-Gerät. Glasfaserkoppler, auch als Strahlteiler bekannt, findet sich in einer bestimmten Aufteilung des Drahtes. Es ist wirklich in mehrere Strahlfaserbündel aufgeteilt, hängt von der optischen Leistungsverteilungsvorrichtung mit integriertem Wellenleiter des Quarzsubstrats ab, da das optische Netzwerksystem beim Koaxialkabelübertragungssystem auch die identische Verbindung zur Zweigverteilung und die Notwendigkeit einer Glasfaserverzweigungsvorrichtung darstellen muss aus dem optischen Signal, hier ist das wichtigste passive Glasfaserverbindungsgerät, das Gerät der Glasfaserserie bietet umfangreiche Ein- und Ausgangsterminals und Terminals, die insbesondere für passive optische Netzwerke (BPON, EPON, GPON, FTTX, FTTH usw.) mitteldichte Faserplatten (MDF) und der Anschlusszweig des Signalgeräts lassen sich auch mit Licht erreichen.

Ein Glasfaser-Splitter ist eigentlich ein Gerät, das nur ein Glasfasersignal aufnehmen und in mehrere Signale aufteilen kann. Glasfaser-Splitter sind wahrscheinlich die Schlüsselkomponenten von FTTH. Glasfaser-Splitter können mit verschiedenen Arten von Steckverbindern abgeschlossen werden, das Primärpaket kann ein Kastentyp oder ein Edelstahlrohr sein, Sie werden normalerweise mit Kabeln mit 2 mm oder 3 mm Außendurchmesser verwendet, ein anderer wird normalerweise mit Kabeln mit 0,9 mm Außendurchmesser kombiniert. Basierend auf dem Arbeitswellenlängenunterschied finden Sie Einzelfenster- und Doppelfenster-Glasfaserteiler. Es gibt Singlemode- und Multimode-Fasersplitter.

Wenn alle beteiligten Fasern mit dem Faserkoppler Singlemode sind, gibt es bestimmte physikalische Einschränkungen in Bezug auf die Leistung mit allen Kopplern. zum Beispiel ist es nicht einfach, zwei Eingänge derselben optischen Frequenz ohne signifikante Zusatzverluste zu einem einzigen Polarisationsausgang zu kombinieren. Ein faseroptischer Koppler, der zwei Eingänge mit unterschiedlichen Wellenlängen zu einem Ausgang kombinieren könnte, ist jedoch häufig in Faserverstärkern zu sehen, um den Signaleingang zusammen mit der Pumpwelle zu mischen.

Denken Sie daran, dass Faserkoppler nicht nur über Singlemode-Koppler, sondern zusätzlich über Multimode-Koppler verfügen. Multimode-Koppler werden aus Gradientenindexfasern mit Kerndurchmessern von 50 µm oder 62,5 µm hergestellt. Faseroptische Multimode-Koppler werden für die Kurzstreckenkommunikation bei 1310 nm oder 850 nm verwendet. Multimode-Koppler werden unter Verwendung einer Technik oder einer Fusionstechnik hergestellt. Sie werden für viele gängige Multimode-Fasern mit Kerndurchmessern von 50μm bis 1500μm vorgestellt.

Der größte Glasfaseranbieter bietet jetzt eine Auswahl an Glasfaser-Splittern an. Für weitere Informationen zu Glasfaser-Splittern rufen Sie uns bitte unter an. Wir sind Ihre bessere Wahl für Fasersplitter.

%d bloggers like this: