How to choose the right Fiber Optic Connector?

by http://www.fiber-mart.comWhen selecting the right fiber optic connector to use for any job or installation there are a few key features to make note of. Not doing the proper preparation cable make the customer go from satisfied to unsatisfied pretty quickly. So what are some keys factors to look at when selecting the right connector for a fiber optic installation? What is the equipment or panel that the fiber optic cables are connecting to?Match the class size to the appropriate connector glass type1.OM1 to a beige color OM1 connector2.OM2 50 micron black connector or aqua3.OM3/4 50 micron aqua or maroon connector4.OS2 single-mode blue connector The termination Method: Mechanical, Epoxy Style (Termination Technique) 1.Mechanical – termination of a connector can take less than 2 minutes.  The disadvantages are the overall pull tension, but the connector can be reused.2.Epoxy Style Termination: This termination technique requires a lot of time and expertise, The advantages are the connector cost, but labor time is extensive.  The pull tension is increased significantly over a mechanical technique, but the connector can not be reused. Termination Time When deciding on a connector for an installation, selecting the right connector for the application depends on durability, performance and cost. Certain fiber optic installations are designed to save overall install time, such as pre-terminated, which we have discussed in previous blog posts. Below are some common connector types as well as which applications they are primarily used for. Note, 90% of the market installations consist of ST, SC and LC connector types. ST or Straight Tip-  Used mostly in security applications (CCTV) because of the design is similar to a BNC coaxial connector    1.Loss- .5-1dB per connectionSC or Square or Subscriber-  Used mostly in data applications because of the design is similar to an RJ45 modular plug.    2.Loss- .5-1dB per connectionLC or Lucent or Little- Most Popular style of connector and used mostly in data applications because of the design is similar to a RJ45 modular plug   3.Loss- .5-1dB per connection

How to choose the right Fiber Optic Connector?

by http://www.fiber-mart.com

When selecting the right fiber optic connector to use for any job or installation there are a few key features to make note of. Not doing the proper preparation cable make the customer go from satisfied to unsatisfied pretty quickly. So what are some keys factors to look at when selecting the right connector for a fiber optic installation?
What is the equipment or panel that the fiber optic cables are connecting to?
Match the class size to the appropriate connector glass type
OM1 to a beige color OM1 connector
OM2 50 micron black connector or aqua
OM3/4 50 micron aqua or maroon connector
OS2 single-mode blue connector
The termination Method: Mechanical, Epoxy Style (Termination Technique)
Mechanical – termination of a connector can take less than 2 minutes.  The disadvantages are the overall pull tension, but the connector can be reused.
Epoxy Style Termination: This termination technique requires a lot of time and expertise, The advantages are the connector cost, but labor time is extensive.  The pull tension is increased significantly over a mechanical technique, but the connector can not be reused.
Termination Time
When deciding on a connector for an installation, selecting the right connector for the application depends on durability, performance and cost. Certain fiber optic installations are designed to save overall install time, such as pre-terminated, which we have discussed in previous blog posts.
Below are some common connector types as well as which applications they are primarily used for. Note, 90% of the market installations consist of ST, SC and LC connector types.
ST or Straight Tip-  Used mostly in security applications (CCTV) because of the design is similar to a BNC coaxial connector
Loss- .5-1dB per connection
SC or Square or Subscriber-  Used mostly in data applications because of the design is similar to an RJ45 modular plug.
Loss- .5-1dB per connection
LC or Lucent or Little- Most Popular style of connector and used mostly in data applications because of the design is similar to a RJ45 modular plug
Loss- .5-1dB per connection

Fiber Optic Patch Cables With Different Fiber Optic Connectors

by http://www.fiber-mart.com

Fiber optic patch cable can be also classfied by the types of fiber optic connector. For example, LC fiber optic patch cable is named as it is with LC connector. Similarly, there are SC, ST, FC, MT-RJ, E2000, MU and MPO/MTP fiber optic patch cables. What’s more, there are PC, UPC, APC type fiber patch cords, which are differentiated from the polish of fiber connectors.
LC Fiber Optic Patch Cable
LC fiber optic patch cable (LC fiber cable)is terminated with LC connector. LC is the short form of Lucent Connector. LC connector is a push and latch structure, with plastic housing and accurate 1.25mm ceramic ferrule. LC type is a popular kind of small form fiber optic patch cable which reduce the space and it is widely used for densely installation. The LC fiber patch cables use a 1.25 mm ferrule, half the size of the ST patch cable. It has good performance and is highly favored for single mode patch cord. LC fiber patch cables comply with IEC, Telcordia, ANSI/EIA/TIA .The connector of LC patch cable is used on 1.6mm/2.0mm as well as 3.0mm cable. There are LC/PC (for multimode), LC/UPC and LC/APC (for single mode) patch cables.
SC Fiber Optic Patch Cable
SC fiber optic patch cable is terminated with SC connector. The SC connector was invented by the Japanese company NTT. SC stands for Subscriber Connector or Square Connector or Standard Connector. It is extremely common in datacom and telecom fiber optic market. It has a push and pull type and can be used for 1000 mating cycles. SC fiber optic patch cable is with a locking tab on the cable termination and provides for accurate alignment through their ceramic ferrules. It has an advantage in keyed duplexibility to support sending and receiving channels. SC fiber optic patch cable features low cost, simplicity as well as good durability. It is the most cheapest type, convenient to use and cost saving. SC fiber optic patch cable is widely used in fiber optic networks and can be with zirconia sleeve and plastic housing.
ST Fiber Optic Patch Cable
ST fiber optic patch cable (ST fiber cable)is terminated with ST connector. ST stands for Straight-Tip and features a Bayonet twist locking mechanism. ST connector has 2.5mm diameter ferrule as in SC connector. It was developed by AT&T and was very popular in the 1980s and 1990s. ST connector has bayonet-style housing and a long spring-loaded ferrule hold the fiber. It is available in both multimode and single mode versions. Horizontally mounted simplex and duplex adapters are available with metal or plastic housing, with a choice of phosphor bronze or zirconia split sleeve. Although there are plastic housing ST connectors, more and more people tend to use metal housing ST. ST fiber optic patch cable has straight tip type terminations and is easy to insert and remove. If you experience high light loss, try to reconnect it. It is rated for 500 mating cycles. ST fiber optic patch cable is one of the older generations, but it is still widely used for multimode networks, including LANs for buildings and campuses.
FC Fiber Optic Patch Cable
FC fiber optic patch cable is terminated with FC connector, a screw type connection. FC stands for Fixed Connector. Same as SC connector, FC is also invented by NTT. FC is with metal housing, screw structure. FC connector ferrule and sleeves used in FC adaptor are both same as SC ones. FC fiber optic patch cable is available in both single mode and multimode versions. It is applied in high-vibration environment and can screw on firmly, but you need to have the key aligned in the slot properly before you tighten it.
MTRJ Fiber Optic Patch Cable
MTRJ fiber optic patch cable is terminated with MTRJ connector. MTRJ stands for Mechanical Transfer Registered Jack. MTRJ connector is developed from MT and RJ connectors. It is with plastic housing and plastic ferrule and features two-fiber connection, that is to say, two fiberglass connection within one MTRJ fiber optic connector. MTRJ connectors use molded MT ferrules originated by NTT. Each MTRJ connector houses two fibers (duplex) and the footprint resembles copper RJ45 Ethernet connector. It is half the size of a SC connector and contributes to the price drop per fiber port on fiber-to-the-desktop solutions. MTRJ connectors come in male (with two metal pins) and female (no pins). MTRJ fiber optic patch cable has female type and male type. The difference between them is that the male type is with two pins on each of the MTRJ connector. The MTRJ patch cable is commonly used for networking applications. Its size is slightly smaller than a standard phone jack and is easy to operate.
E2000 Fiber Optic Patch Cable
E2000 fiber optic patch cable is terminated with E2000 connector. E2000 connector has a spring-loaded shutter used to protect the ferrule from dust and scratches. With similar structure of SC connector, it is smaller. E2000 fiber optic patch cable is one of the latest style yet one of the most expensive optical patch cord.
MU Fiber Optic Patch Cable
MU fiber optic patch cable is terminated with MU connector. MU connector is also the invention of NTT. It is with plastic housing and a push pull structure. MU connector is also a small form-factor connector which features a 1.25mm diameter ferrule as in LC connector. MU connector has the same push-pull locking mechanism as SC connector. MU fiber optic connector is similar size of LC and sometimes named small-SC. MU connectors are used in advanced optical transmission, exchange, and subscriber systems or high speed data application. MU fiber optic patch cable is developed to replace SC in the future.
MPO/MTP Fiber Optic Patch Cable
MPO fiber optic patch cable is terminated with MPO connector. The MPO is an high-density multi-fiber connector built around precision molded MT ferrule. It is a push-pull connector compliant IEC 61754-7 and TIA/EIA 604-5A and offers low cost per termination for high density applications. It is usually used in ribbon fiber optic patch cables or ribbon fan out multi fiber assemblies. MPO has multi fiberglass core inside each single connector, that is to say, there are several fiberglass connections in each single MPO fiber optic patch cable, for example, 12 fiber, 24 fiber, 36 fiber, etc. MTP is upgrade version of MPO. MTP fiber optic patch cable allows high-density connections between network equipment in telecommunication rooms. It uses a push-pull latching mechanism for easy and intuitive insertion and removal.
MPO patch cord (Ribbon fan out Fiber patch cord, Ribbon mliti cable fan out) use MTP and MPO multi fiber type connectors, each one of the connector are used with ribbon type fiber optic cables which contain multi fiber in one single jacket, so that MPO Fiber Patch Cord greatly save space and are very convenient to use. Based on single ferrule MT technology, the MPO Fiber Patch Cord assemblies provide up to 72 fiber connections in a single point, reducing the physical space and labor requirement, while providing the same bandwidth capacity of a multi-fiber cable with individual fiber connector terminations per cable. Typical MPO fiber optic patch cable assemblies are MPO to 8 LC, MPO to 12 MTRJ, etc. MPO fiber optic patch cable is also available by single mode and multimode, PC and APC polish. fiber-mart MPO fiber patch cables are available in 12, 24, 36, 48, 72, 96 and 144 fiber versions, PC and APC finishes, and support both multimode and single mode applications.

 

The Typle and Introduction of Fiber Optic Connector

by http://www.fiber-mart.com

According to the different transmission, fiber optic connector can be divided into singmode and multimode silicon-based fiber optic cable, and fiber optic cable in plastic transmission medium. According to the connector structure can be divided into FC,SC,ST,LC,D4,DIN,MU and etc. Wherein ST fiber optic connector is commonly used wiring device side, such as Fiber Optic Patch Cords panels, fiber optic module. While SC and MT connectors are typically used for network equipment side. By the shape of the fiber end face, it can be divided into FC,PC(including SPC or UPC) and APC,according to the number of fiber core, it can be divided into  singlecore and multicore (eg MT-RJ).Fiber optic connectors are widely used variety. In actual application process, we generally follow different fiber connector structure to distinguish it. The following are some of the more common optical connector:
FC fiber optic connectors: Strengthening way is to use an external metal sleeve, fastening means for the turnbuckles. Generally adopt ODF side(Mostly used one the patch panel).
ST fiber optic connectors: Commonly used in fiber optic patch panels, rounded shell, fastening means for the turnbuckles.(Commonly used in fiber optic patch panel).
SC fiber optic connectors: Connected with GBIC optical modules connector, its casing is rectangular, fastening means is a latch type using pin plug, do not need to rotate.(Mostly used in Switch Router).
LC fiber optic connectors: Connected with SFP module connector, it uses easy operation made modular jack (RJ) latch mechanism
MT-RJ:Square transceiver fiber optic connectors, one pair of fiber transceiver.
The fiber jumpers from fiberstore use smaller concentricity error and inner diameter high-precision ceramic ferrule,as well provides additional insertion loss and return loss, in order to avoid damage to the transmission optical transceiver device. We use advanced technology and grinding equipment, ensure the grinding fiber center offset, depression and end radius of curvature of ceramic fiber. Our Technical parameters are in line with the required standards. Fiberstore ensure the long-term use of the connector, not only for the joints and back reflection attenuation test, but aslo the use of scratches or blemishes precision interferometer test the joint surface, measurements taken FC, ST, SC, LC and MU-type connector of the radius of curvature, ground offset amount of the optical fiber and the projecting amount of depression, in order to ensure the quality of the joint.

 

Things You Should Know about Fiber Optic Connector Polishing

by http://www.fiber-mart.com

Optical fiber is utilized for high-speed and error-free data transmission across connector assemblies. So the connector end faces need to be polished to optimize performance. And also the connectors must follow acceptance criteria related to insertion and back reflection loss as well as end-face geometry specifications. This article will talk about the fiber optic connectors polishing.
Polishing Process
Early physical contact connectors required spherical forming of their flat end faces as part of the polishing procedure. It involved a four-step process: epoxy removal, ferrule forming, and preliminary and final polishing. These steps utilized aggressive materials for epoxy removal and ferrule forming, generally accomplished with diamond polishing films. Now the polishing process has developed into a sequence of epoxy removal, followed by rough, intermediate and final polishing cycles because almost all connectors are manufactured with a pre-radiused end face. One goal is to avoid excessive disruption of the spherical surface,
while still producing a good mating surface.
Polishing Specifications
Polishing specifications for fiber connectors fall into two categories related to performance and end-face geometry. Back reflection and insertion loss specifications are the most critical measures of polished end functionality. The insertion loss is the amount of optical power lost at the interface between the connectors caused by fiber misalignment, separation between connections (the air gap) and the finish quality of each connector end. The current standard loss specification is less than 0.5 dB, but less than 0.3 dB is increasingly specified. Back reflection is the light reflected back through the fiber toward the source. High back reflection can translate to signal distortion and, therefore, bit errors in systems with high data transfer rates.
Polishing Material
Today several types of connectorized fibers are available, the most common of which are 2.5 mm, 1.25 mm and multifiber. Connector end faces must first be air-polished to ensure a proper mating surface. This will be followed by a sequence of polishing steps depending on the type of connector, the back reflection and the insertion loss specifications. Regardless of the connector type, most polishing sequences begin with aggressive materials, including silicon carbide to remove epoxy and diamond lapping films for beginning and intermediate polishing. These remove both surrounding material and fiber at the same rate. But the last polishing step needs a less aggressive material to attack only the fiber, such as silicon dioxide. Using a material for final polishing that is too aggressive could result in excessive undercut. The wrong final-polish material can cause excessive protrusion, leading to fiber chipping and cracking during the connector mating process.
Impact Factor
Issues to be examined include the polishing films used, the type of epoxy and lubrication. Films are the most significant impact because the gradations and quality vary from supplier to supplier. End users should pay attention on selecting film type. Excessively aggressive films can destroy a 125-μm fiber and the end-face radius. Epoxy removal is also essential to contamination-free polishing. Some types of epoxies can be removed more easily with specific grades of silicon-carbide polishing films. The films to use in this step depend on the size of the epoxy bead mounted on the connector end face and the epoxy type. Epoxies have different varieties. Some will be tacky, some firm. In all, a contamination-free environment is essential to optimizing connector polishing.
Polishing may be an old art form, but for the immediate future, it’s here to stay. Undoubtedly inspection criteria will increase. Polishing procedures will be driven to change, and new connector style will also make us continuously strive to reinvent our approach to polishing. Fiberstore has various products about fiber optic polishing. For more details, please visit fiber-mart.COM.

 

How to clean a fiber optic connector?

Do you know how important is to maintain a fiber connector clean? In fact, having a clean eviroment for the connector is one of the most important procedures in the conservation of a fiber optic system. This is necessary to keep quality connections.
If any particle of dust, lint, oil or any other dirt get on the end of the connector, this will interrupt the correct function of the signal that is being sent over the fiber.
An improper maintenance of the cables can also cause other problems such as scratching the glass surface, instability in the laser system, and a misalignment between the fiber cores.
So, the questions is: What to do to clean my fiber optic? Simple:
Before beginning all the process, make sure the cable is disconnected from both ends and turn off any laser sources. Don’t forget to wear safety glasses and check the connectors before you clean them.
Step 1: Inspect the fiber optic connector, component, or bulkhead with a fiberscope.
Step 2: If the connector is dirty, clean it with a dry cleaning technique. This procedure consists of using a reel-based cassette cleaner with medium pressure, wipe the connector end face against a dry cleaning cloth in one direction. This step must be done in both parts of the fibre optic and can be repeated at least two times.
Step 3: If the connector is still dirty, clean it with a wet cleaning technique followed immediately with a dry cleaning in order to ensure no residue is left on the end face. You can use a special solution for fibre optic or 91% Isopropyl Alcohol. Wipe the end face against the wet area and then onto a dry area to clean potential residue from the end face.
Wet cleaning is more aggressive than dry cleaning, and will remove airborne contamination as well as light oil residue and films.
Similar to the dry cleaning method, this one, can be done twice if you consider that the fiber optic isn’t clear yet.
IMPORTANT: The end face of the connector should never be touched during the cleaning process and also the clean area of a tissue should not be touched or reused.
The fiber end should be inspected with a fiberscope of at least 200x magnification, and if it is contaminated, it should be cleaned with one of the methods explained before.
DO’s and DON’Ts when it comes to cleaning a Fiber Optic:
 DO’s:
Turn off any laser sources before you inspect fiber connectors, optical components, or bulkheads.
Make sure that the cable is disconnected at both ends and the card or pluggable receiver is removed from the chassis.
Wear the appropriate safety glasses when required in your area. Be sure that any laser safety glasses meet federal and state regulations and are matched to the lasers used within your environment.
Inspect the connectors or adapters before you clean.
Use the connector housing to plug or unplug a fiber.
Keep a protective cap on unplugged fiber connectors.
Store unused protective caps in a resealable container in order to prevent the possibility of the transfer of dust to the fiber. Locate the containers near the connectors for easy access
Discard used tissues and swabs properly.
 DON’TS:
Use alcohol or wet cleaning without a way to ensure that it does not leave residue on the end face. It can cause damage to the equipment.
Look into a fiber while the system lasers are on.
Clean bulkheads or receptacle devices without a way to inspect them.
Touch products without being properly grounded.
Use unfiltered handheld magnifiers or focusing optics to inspect fiber connectors.
Connect a fiber to a fiberscope while the system lasers are on
Twist or pull forcefully on the fiber cable.
Reuse any tissue, swab, or cleaning cassette reel.
Touch clean area of a tissue, swab, or cleaning fabric.
Touch any portion of a tissue or swab where alcohol was applied.
Touch the dispensing tip of an alcohol bottle.
Use alcohol around an open flame or spark; alcohol is very flammable.
%d bloggers like this: