Patch Cord Types and Their Impact on the Network

Data centers and the networks they support have grown to be an integral part of every business. The software applications that keep mission-critical operations up and running in highly redundant, 24/7 environments rely on highly engineered structured cabling systems to connect the cloud to every user. Structured cabling is the foundation that supports data centers.
Although structured cabling isn’t as sexy as diesel-driven UPS systems or adiabatic cooling systems, it plays a huge role in supporting the cloud. One important component of structured cabling that is often overlooked: patch cords.
Oftentimes, patch cords are purchased haphazardly and installed at the last minute. But the right patch cord type can improve the performance of your network. The proper design, specification, manufacturing, installation and ongoing maintenance of patch cord systems can help ensure that your network experiences as much uptime as possible.
A patch cord problem can wreak havoc on an enterprise, from preventing an airline customer from making a necessary reservation change to keeping a hotel guest from getting work done while on business travel.
What Drives Data Growth?
Explosive data growth due to social media, video streaming, IoT, big data analytics and changes in the data center environment (virtualization, consolidation and high-performance computing) means one thing: Data traffic is not only growing in bandwidth, but also in speed.
Another essential point is network design. Today’s network design, such as a leaf-spine fabric, makes the network flatter, which lowers latency – this makes the Ethernet and corresponding patch cord types incredibly important.
The Definition of a Patch Cord
A patch cord is a cable with a connector on both ends (the type of connector is a function of use). A fiber patch cord is sometimes referred to as a “jumper.”
Patch cords are part of the local area network (LAN), and are used to connect network switches to servers, storage and monitoring portals (traffic access points). They are considered to be an integral part of the structured cabling system.
Copper patch cords are either made with solid or  stranded copper; due to potential signal loss, lengths are typically shorter than connector cables.
A fiber patch cord is a fiber optic cable that is capped at both ends with connectors. The caps allow the cord to be rapidly connected to an optical switch or other telecommunications/computer device. The fiber cord is also used to connect the optical transmitter, receiver and terminal box.
Selecting Copper Patch Cords
There are many copper patch cord types to consider – but here are a few key elements to keep in mind.
Size: A copper patch cord with a smaller OD (outside diameter) takes up less space, and also has a smaller bend radius. This allows it to be deployed in space-deprived environments, and offers more working space for potential expansion in the future.
Twinning: A stable and consistent twinning process (the twisting of copper conductors) helps maintain internal cable characteristics and reduce signal loss during physical manipulation.
Bonded-Pair Technology: The process of bonding individual conductors along the longitudinal axis guarantees uniform spacing between the twisted pair, as well as reliable electrical performance.
Types of Testing: Transmission performance depends on the integrity of the system, including cable characteristics, connecting hardware, cross-connect wiring and patch cords. Manufacturer testing and post-installation testing ensure that the network remains reliable and 100% available.
Length: Pay attention to length restrictions for twisted pairs.
Connections: Look for snagless, over-molded engineered boots, which offer strain and pull relief to protect patch cords from damage.
Traceability: Having the ability to trace a patch cord’s connection points improves reliability, reduces troubleshooting time, improves uptime and reduces IT teams’ efforts when making changes.
Selecting Fiber Patch Cords
Choosing fiber patch cords requires just as many considerations as choosing copper patch cord types. Before selecting a fiber patch cord, ask yourself:
Which connector type is needed? LC, SC, ST, FC, MPO or MTP? Each connector option offers pros and cons. Selecting the right connector can speed up deployment and reduce costs.
Should singlemode or multimode patch cord types be used? Singlemode patch cords are used for long distances; multimode patch cords are used for shorter distances.
Are simplex (one connector per end) or duplex (two connectors per end) cable connections necessary?
How long should the patch cord be? For example, fiber patch cords are available in lengths of 2 m, 3 m or 5 m. The right patch cord length will eliminate slack and potential damage due to kinking.
What type of cable jacket is needed? Depending on the installation location (plenum, underfloor, exterior or floor mounted), the exterior cabling jacket is available in a variety of configurations to protect the cable’s insulation and conductor core. Selecting the right jacket – single jacket, plenum rated, double jacket/armored, double jacket/heavy duty, etc. – for the right environment will ensure proper performance.
The demand for higher bandwidth and faster network speeds requires a network that can handle higher compute densities without sacrificing reliability.
Selecting, installing and maintaining the right patch cord type affects today’s network in many ways. Belden’s copper and fiber patch cords offer superior performance and engineered resiliency to meet the bandwidth and network speeds of today, tomorrow and beyond.


Your Guide to Selecting the Perfect Patch Cord for the Job
I receive many questions when it comes to the topic of Networks and Datacom, but one subject I believe many can benefit from is how to determine the differences between one fiber optic patch cord and another. Now, fiber optic patch cords come in a variety of cable and connector types. In order to obtain the proper patch cord you need to determine several attributes:
Cable Type — Fiber Optic cable comes in two general types, Single-Mode and Multi-Mode fiber.
Single-Mode fiber cable generally has a 9 Micron diameter glass fiber. There are two sub groups (referred to as OS1 and OS2) but most cable is “dual rated” to cover both classifications.
Multi-Mode fiber cable can have several different diameters and classifications of fiber strands.
The two diameters currently in use are 62.5 Micron and 50 Micron.
Within the 50 Micron diameter Multi-Mode cable, there are three different grades (referred to as OM2, OM3, and OM4). The cable types used in the patch cord should match that of the network cabling to which they are attached via the patch panel.
The fiber cable may be available in different “jacket diameters” (such as 2mm or 3mm). Thinner diameters (1.6 or 2mm) may be preferable in dense installation within a single rack since they take up less space and are more flexible.
Cables that route from rack to rack (especially via cable tray) may be more suitable if they have the thicker jacket that results in larger diameters thus making them more rigid.
Flammability of the jacket material could become an issue if the area they are in has special requirements for flame spread or products of combustion in case of a fire. In these cases, patch cords may have to be classified as “Plenum Rated” (OFNP) rather than “Riser Rated” (OFNR).
Simplex or Duplex — Unlike copper patch cords which send information in both directions (having multiple pairs of conductors with which to do so), most fiber patch cord cables have a single strand of fiber allowing for signal flow in one direction only.
Connecting equipment so that it can send and receive information requires two strands of fiber (one to transmit and one to receive information). This can be accommodated by using two “Simplex” (single strand of fiber) cables for each equipment interconnection or a “Duplex” cable, with conductors and/or connectors bonded together in pairs.
Length — Overall length of the patch cord may be specified in feet or meters, depending on your preference.
Connector Type — See the connector type descriptions below. Some patch cords may have different connector types on each end to accommodate interconnection of devices with dissimilar connectors. In some cases, there may be a connector on only one end, and bare or unterminated fiber on the other. These are usually referred to as “Pigtails” rather than “Patch Cords”.

How to buy the best quality Singlemode Fibre Optic Patch Leads?

Are all optic fibre patch cords created equal
Many people would answer yes to this question, as from first glance they all look physically similar. However, upon closer inspection and by measuring performance, it is quite obvious that the quality can vary greatly.
For many people in the IT and telecoms industry, a fibre optic patch lead (also known as an optic fibre patch cord) is now considered a commodity item.
However, when choosing to buy the best quality singlemode fibre optic patch leads, the following should be considered:
What is Fibre Optic Patch Lead Connector Grade (Performance)?
IEC standards dictate the connector performance requirement for each grade of fibre optic patch lead connector. These standards guide end users and manufacturers in ensuring compliance with best practices in optical fibre technology.
Generally, Grade A, B or C options are available, with Grade A providing the best performance.
According to IEC 61753 and IEC 61300-3-34 Attenuation Random Testing Method, ‘Grade C’ connectors have the following performance characteristics: Attenuation: 0.25dB mean, >0.50dB max, for >97% of samples. Return Loss: >35dB.
‘Grade B’ connectors have the following performance characteristics: Attenuation: 0.12dB mean, >0.25dB max, for >97% of samples. Return Loss: >45dB.
‘Grade A’ connector performance (which is still yet to be officially ratified by IEC) has the following performance characteristics: Attenuation: 0.07dB mean, >0.15dB max, for >97% of samples. While the Return Loss using IEC 61300-3-6 Random Mated Method is >55dB (unmated – only angled connectors) and >60dB (mated), this performance level is generally available for LC, A/SC, SC and E2000 interfaces.
What Singlemode Optic Fibre Types are available?
For singlemode fibre optic patch leads, two fibre types are generally available, G652D or G657A2.
G652D and G657A2 specifications refer to the glass and cable construction of optical fibre and are generally the fibres of choice in optical fibre patch leads for singlemode systems.
657A2 optical fibre in patch leads, provide an improved bend radius and flexibility, which may allow for better cable management and routing in congested areas. The improved bend radius may also allow for increased density in high-density patching fields. G657A2 optical fibre is becoming very popular in Data Centre and Enterprise network deployments.
What are Optical Fibre Connector types?
For singlemode optical fibre patch leads, the following connector types are available, LC, SC, SC/A, ST, FC, E2000.
The most common types of connectors used in modern transmission systems are SC, SC/A and LC (either simplex or duplex connectors).
Selecting the correct patch lead connector type is usually dictated by the transmission equipment or patch panel that the patch lead needs to connect with.
Why the Optical Fibre Cable Diameter is important
In high-density patching areas, the selected patch lead cable diameter can either increase or decrease congestion. It is generally recommended that simplex fibre optic patch leads have a diameter of approximately 2mm.
When selecting duplex singlemode fibre optic patch leads, there are a couple of options. Firstly, a figure 8 (2 x 2mm cords) patch cord is available, with each connector being physically separated (simplex connector). Secondly, the more common option for duplex fibre patch leads is a round 3mm duplex cable. This option requires the use of a uniboot duplex fibre optic connector, however, the smaller cable diameter helps reduce congestion in patching fields.

How Much Do You Know About OADM?

The OADM, short for optical add drop multiplexer, is one of the key components for dense wavelength division multiplexing (DWDM) and ultra wide wavelength division multiplexing (UW-WDM) optical networks. OADM technology is used to cost effectively access part of the bandwidth in the optical domain being passed through the in-line amplifiers with minimum amount of electronics.
An OADM can be considered as a specific type of optical cross-connect, widely used in wavelength division multiplexing (WDM) systems for multiplexing and routing fiber optic signals. They selectively add and drop individual or sets of wavelength channels from a dense wavelength division multiplexing (DWDM) multi-channel stream. OADMs are used to cost effectively access part of the bandwidth in the optical domain being passed through the in-line amplifiers with the minimum amount of electronics.
OADMs have passive and active modes depending on the wavelength. In passive OADM, the add and drop wavelengths are fixed beforehand while in dynamic mode, OADM can be set to any wavelength after installation. Passive OADM uses WDM filter, fiber gratings, and planar waveguides in networks with WDM systems. Dynamic OADM can select any wavelength by provisioning on demand without changing its physical configuration. It is also less expensive and more flexible than passive OADM. Dynamic OADM is separated into two generations.
A typical OADM consists of three stages: an optical demultiplexer, an optical multiplexer, and between them a method of reconfiguring the paths between the optical demultiplexer, the optical multiplexer and a set of ports for adding and dropping signals. The MUX multiplexes the wavelength channels that are to continue on from DEMUX ports with those from the add ports, onto a single output fiber, while the DEMUX separates wavelengths in an input fiber onto ports. The reconfiguration can be achieved by a fiber patch panel or by optical switches which direct the wavelengths to the MUX or to drop ports. All the light paths that directly pass an OADM are termed cut-through lightpaths, while those that are added or dropped at the OADM node are termed added/dropped lightpaths.
OADM works as follows: the WDM signals from line containing N wavelength channels enter the OADM “Main Input” side, depending on your business needs, from N wavelength channel, selectively from the road-side (Drop) required by the output wavelength channel, accordingly from the road-end (Add) enter the desired wavelength channel. Regardless of other local wavelength channel directly through the OADM, and routing wavelength channels multiplexed together, from the output terminals of the circuit of OADM (Main Output) output. The following picture shows the basic operation of an OADM.
Physically, there are several ways to realize an OADM. There are a variety of demultiplexer and multiplexer technologies including thin film filters, fiber Bragg gratings with optical circulators, free space grating devices and integrated planar arrayed waveguide gratings. The switching or reconfiguration functions range from the manual fiber patch panel to a variety of switching technologies including microelectromechanical systems (MEMS), liquid crystal and thermo-optic switches in planar waveguide circuits.
CWDM and DWDM OADM provide data access for intermediate network devices along a shared optical media network path. Regardless of the network topology, OADM access points allow design flexibility to communicate to locations along the fiber path. CWDM OADM provides the ability to add or drop a single wavelength or multi-wavelengths from a fully multiplexed optical signal. This permits intermediate locations between remote sites to access the common, point-to-point fiber message linking them. Wavelengths not dropped, pass-through the OADM and keep on in the direction of the remote site. Additional selected wavelengths can be added or dropped by successive OADMS as needed.
fiber-mart.COM provides a wide selection of specialized OADMs for WDM system. Custom WDM solutions are also available for applications beyond the current product designs including mixed combinations of CWDM and DWDM.

Do I Need a Gigabit Switch or 10/100Mbps Switch?

Ethernet network speeds have evolved significantly over time and typically range from Ethernet (802.11) at 10Mbps, Fast Ethernet (IEEE 802.3u) at 100Mbps, Gigabit Ethernet (IEEE 802.3-2008) at 1000Mbps and 10 Gigabit Ethernet (IEEE 802.3a) at 10Gbps. Meanwhile, Ethernet switches have also escalated from 10/100Mbps switch to Gigabit switch, 10GbE switch, and even 100GbE switches. The topic came up frequently that “Do I Need a Gigabit Switch or 10/100Mbps Switch?” Gigabit switch vs 10/100Mbps switch, which do I need to satisfy my network speeds requirement? This post will give you the answer.
Gigabit Switch: the Mainstream on Network Switch Market
Gigabit switch is an Ethernet switch that connects multiple devices, such as computers, servers, or game systems, to a Local Area Network (LAN). Small business and home offices often use Gigabit switches to allow more than one device to share a broadband Internet connection. A gigabit switch operates in the same manner, only at data rates much greater than standard or Fast Ethernet. People can use these switches to quickly transfer data between devices in a network, or to download from the Internet at maximum speeds of 1000Mbps. If a switch says “Gigabit”, it really means the same thing as 10/100/1000, because Gigabit switches support all three speed levels and will auto-switch to the appropriate one when something is plugged in. The following is a Gigabit 8 port poe switch with 8 x 10/100/1000Base-T RJ45 Ethernet ports.
10/100Mbps Switch: Still Alive and Well for Some Reason
10/100Mbps switch is a Fast Ethernet switch released earlier than Gigabit Ethernet switch. The data speed of 10/100Mbps switch is rated for 10 or 100Mbps. When a network switch says “10/100”, it means that each port on the switch can support both 10Mbps and 100Mbps connection speeds, and will usually auto-switch depending on what’s plugged into it. Currently, few devices run at 10Mbps, but it is still alive on the market for some reason. Actually, 10/100 is sufficient for internet browsing and Netflix. But if you will be doing more than one thing with your network connection, such as file transfers, or the set-top box, I would recommend you go with the Gigabit switch.
Gigabit Switch vs 10/100Mbps Switch: How to Choose?
Network engineers who refresh the edge of their campus LAN encounter a fundamental choice: Stick with 100Mbps Fast Ethernet or upgrade to Gigabit Ethernet (GbE). Vendors will undoubtedly push network engineers toward pricier GbE, but network engineers need to decide for themselves which infrastructure is right for the business. Currently, Gigabit switch is much more popular than Fast Ethernet 10/100Mbps switch. Because gigabit switch used in tandem with a gigabit router will allow you to use your local network at speeds up to ten times greater than 10/100Mbps switch. If either of these component are not gigabit, the entire network will be limited to 10/100 speeds. So, in order to use the maximum amount of speed your network can pump out, you need every single component in your network (including you computers) to be gigabit compliant. In addition, by delivering more bandwidth and more robust management, Gigabit switches are also more energy efficient than 10/100Mbps switches. This offers enterprises the opportunity to lower their power consumption on the network edge.
There’s a multitude of switch options to choose from on the dazzling market. So, before determining the right switch for your network, you’re supposed to have a close look at your current deployment and future needs. But for most cases, we recommend you buy Gigabit Ethernet devices instead of Fast Ethernet devices, even if they cost a little bit more. fiber-mart provides a full set of Gigabit switches, including 8 port switch, 24 port switch, 48 port switch, etc. With these high performance Gigabit Ethernet switches, your local network will run faster with better internet speed.

Data Switch vs Hub in a Home Network

Data switches and hubs are common networking devices used to regenerate degraded signals and split a signal into multiple signals. They are handy for splitting up an internet connection to your home network. But do you know how they work in a home network? If they both accomplish the same thing, what’s the difference between a data switch vs hub?
What Is a Data Switch?
A data switch is charged with the job of connecting smaller segments of a single network into a connected whole. It transfers data across a network segment using MAC addresses for reference. Data switches are extensively used in Ethernet local area networks. A data switch operates on the Data Link Layer of the OSI (Open Systems Interconnection) model. This means that data switches are fairly smarter than hubs, as they can route data on a dynamic level. If information is destined for a certain computer, the data switch will only send the data to this computer. This addresses our collision problem as switches use what is called micro-segmentation, which will be elaborated later in this article.
What Is a Hub?
Hub is a network device which controls number of switches and router for the whole network. A hub is a “dumb” device in that it broadcasts whatever it hears on the input port to all the output ports. The good thing about “dumb” devices is that they don’t need much configuration or maintenance. But this leads to collisions between data packets and a general degrading of network quality. If you have a hub set up between your router and the rest of your network, you’re setting yourself up for a huge headache. A hub looks just like a switch, but works differently on the inside. You connect devices to a hub using Ethernet cable and any signal sent from a device to the hub is simply repeated out on all other ports connected to the hub.
Data Switch vs Hub in a Home Network
Data switch vs hub? How do they differ from each other? Hubs are considered Layer 1 (Physical Layer) devices whereas data switches are put into Layer 2 (Data Link Layer). This is where hubs and switches mainly differ. The Data Link layer of the OSI model deals with MAC addresses and switches look at MAC addresses when they process an incoming frame on a port.
Moreover, a data switch is much smarter but pricier than a hub. A data switch can actively manage the connections between the input port and the output ports, so you won’t run into the collision problem or any of the other issues that plague hubs. As you can see below, there are multiple collision domains or segments for the switch network. If computer A and computer B sent data to each other at the same time, you would have a collision. Computer A and computer C or D, however, will not experience a collision in the process. In comparison, for a hub network, there is just one collision domain, which means that if one computer transmits data, it would be interrupted by any of the other computers in the network. Thus, the more devices you connect to the hub, the more collisions there will be in the whole network. The following figure illustrates a data switch vs hub in collision domains.
Data switch vs hub, which one should you choose for a home network? If you purchased the device in question within the last few years, the chance is almost zero that it’s a hub. Historically, switches were expensive and hubs were cheap, but advances in technology have made switches so cheap that they don’t even bother making hubs anymore. Thus, nowadays data switches are higher-performance alternatives to hubs in a home network. fiber-mart provides a full set of high performance data switches, including gigabit ethernet switch, 10gb ethernet switch, 100gbe ethernet switch, etc. If you have any requirement, please kindly visit

How to choose the MPO system for your Fiber Infrastructure

Nowadays, the demand for high connection speeds is increasing at an intimidating pace. People need to send -and receive- more data than ever, and the technology that’s available to them often seems to just not being able to keep up.
Optical fiber seems to represent the best choice when it comes to offering higher speeds -currently required by data center networks. In contrast to multimode and single mode optical networks, which were typically based on duplex fiber links, parallel fiber (MPO-based) connectivity has now become the ideal go-to choice, since it allows the use of pre-terminated systems that can be used in a quick and efficient way.
Nonetheless, this type of connectivity had been used to deliver duplex connectivity combined with duplex modules and breakouts. The selection of multifiber interfaces responds to the demands of increasing applications and density.
This turnover has led to a general consideration of using duplex connectivity, but at the same time, it needs to fill the necessity of including a combination of parallel and duplex interfaces.
Apart from considering these new iterations, it is essential to have a solid grasp on the evolution of network equipment and on the advantages of implementing an infrastructure based on duplex connections.
That being said, let us walk you through the Ethernet Roadmap.
There are several applications housed in data centers, which implies that those applications will demand a diversity in the connectivity topologies. It is commonly known that most networks use duplex links, but the demand for higher speeds requires using duplex links into other groups of links, which is when the term of parallel links enter the debate.
Likewise, this new incorporation asks for certain cabling structures that can handle this new array of options while having the acute vision of what the new results from this structures may provide us with. In other words, what we’re now witnessing it’s a migration from arrangements that involve duplex links into parallel link options that need to cover the requirements of higher speeds.
The great thing about parallel links is that they reduce the operation costs at a significant rate. Since they offer higher connectivity densities, it reduces the power consumption to send that data. This type of connection multiplies the information been transported, so it offers a notable reduction in the time employed in the transmission of information.
The increase of speeds has also developed a certain progress when it comes to the outlining of separate transmission lanes. In the end, the throughput will be augmented due to the incorporation of additional fiber, or the multiplexing over just a single a fiber.
Each one of these parameters will determine the selection of the fiber media and the options for cabling that will become the most appropriate for your data center. The decision of moving from single and duplex links to parallel ones will surely affect your cabling choice. This may traduce to a significant cost at the beginning, but it shall be seen as an investment in the long term.
The first thing you need to do is to determine the desired capacity that your data center will possess in the short-term future. Your team can come in handy forecasting this scenario since it is very well equipped with considering, evaluating and even trying several technologies, platforms and routing strategies.
After coming to terms to answering each one of the specific requirements demanded by your new system, the pre-terminated MPO-based fiber cabling system will enable a quicker utilisation and a certain flexibility of configuration, along with a cabling topology that corresponds appropriately with the new direction and desired performance of your data center direction.
Multimode fiber is definitely the primary media choice for the enterprise data center. Each one of the diverse types of multimode fiber (MMF) will affect the scale and scope of the data center that can be supported when speeds increase, so you need to take that into consideration.
Aside from combining “lanes” to provide for higher and better link speeds, multiplexing several wavelengths on a single pair of fibers offers great results.
The great thing about this new structure of links is that it offers a new set of applications. Depending on the type of configuration, migrations can be enabled between duplex and parallel optics.
This quality is very eloquent when it comes to supporting the notion of the flexibility offered by parallel links. If new needs come up, you should be able to accommodate those necessities by making adjustments to your new structure in your data center.
Every decision that you make towards implementing parallel links will affect your structure -and space- of your cabling, so every single analysis that you can make before adding something to your new structure should be mandatory.
To put it mildly, you need to be aware of the physical space every new configuration is going to occupy. You can have lots of great ideas for new connections, but if you can’t afford the space for it, none of them will work out. But don’t worry, you just need to gain conscience of the dimensions of your cabling configurations so you can design them and implement them properly.
The good thing about duplex cables is that they are very flexible, so not all of these considerations should be thought of as limitations. You can work around them -and, trust us, you should!
By merely thinking about all of this, you could be concerned about the cost it implies, and we hear you. Notwithstanding, this is a cost you need to assume. Not only because the current situation demands it, but also because this decision will stand out as an investment for the near future.
New designs imply adjustments so you can incorporate duplex and parallel connections, meaning that perhaps new racks or more space for your cabling will be needed. This inclusion will also call for changes in the management of your team, which will have to face new ways to handle these devices.
Human beings tend to reject at first all sorts of changes, it’s in our nature, but if you are totally convinced on the benefits that each and single one of these procedures will bring to your data center in the future, you will work through them focused on having the vision aiming at an impending success. The current concerns need to be replaced with a relentless optimism that your work will be enhanced in the long run.
We hope you find this article very useful and that this information can help you increase the speed -and hopefully the quality- of your data center.