The Rapid Development of FTTH Borrow PON Promote Triple Play

by http://www.fiber-mart.com

The arrival of the triple play, will greatly promote the video business, such as high-definition television, as well as the future of 3D TV business rapid development of broadband services, but also broadband access network is another new challenge. FTTH can not only provide massive bandwidth support business, and low operating costs, therefore, FTTH mode will gradually become the mainstream of triple play network construction in 2010 years to achieve scale deployment.
Significant advantages of FTTH
In the past few years, carriers generally adopted EPON technology, by the large-scale depolyment of FTTB/FTTN original access network of optical fibers and speed to achieve from the original 512K “narrow” broadband to 4M/8M/12M high bandwidth upgrade but with the growing popularity of high-definition television and other the severe erosion bandwith video class of business in the next few years, due to the limited bandwidth of EPON can prodive effective, as well as the number of users more brought under a single PON port existing mode will lead to the present FTTB-based access network to turn highlights powerless in the next era of full-service, bandwidth bottlenecks. Continues to mature as the whole industry chain, the end-to-end cost of each line of FTTH has dropped to about 1,000 yuan, has reached the scale deployment costs level, especially in the new area, FTTH FTTB cost disadvantage compared to the gradual narrow, basically reached the same level. Taking into account the FTTH can provide massive bandwidth, business support, and teh operating costs are vey low, FTTH mode will gradually become the mainstream, and achieve economies of scale deployments in 2010.
High quality FTTH
Shanghai Bell as leading technology PON equipment manufacturers, has launched GPON/EPON/10GPON mixed interpolation solutions based on the original 7342 platform, together with a light terminal series to meet operators under different scenarios and business needs FTTH deployment. The Shanghai Bell and Verizon the asymmetric 10G GPON current network pilot. Shanghai Bell will strive to promote 10GPON mature early realization of its commercial deployment.
GPON for FTTH deployment
In FTTH scenario, because GPON splitting ration can be achieved 1:128, with better network planning flexibility, mobility and bandwidth scheduling, can effectively reduce the sunk cost. GPON offers higher effective downlink bandwidth and better QoS guarantee. In addition, in the process of upgrading to the next generation 10G PON compared to EPON, GPON can achieve a smoother evolution.
Completely isolated 10G GPON GPON up and down the line wavelength, wavelength division superposition can be used, in the case does not change the current network deployment OLT / ONT / ODN smooth upgrade. Upstream wavelength and 10GEPON and EPON overlap, so using time division multiplexing manner compatible with the existing network deployment EPON ONU, which will lead to all central office OLT line card with new the line of 10GEPON card to replace this deployment of existing network services and devices serious. Therefore, GPON technology is more suitable for the construction of the FTTH network.

 

How to Reduce the Cost of FTTH Architecture

In our digital world, people increasingly require higher bandwidth to facilitate daily life, whether for leisure, work, education or keeping in contact with friends and family. The presence and speed of internet are regarded as the key factor that subscribers would take into account when buying a new house. Recently there are a growing number of independent companies offering full fiber to the home (FTTH) services, ranging from local cooperatives and community groups to new operators. Today’s article will pay special attention to the reasons why we should implement FTTH network and the methods to reduce the cost of FTTH network.
Why Should We Deploy FTTH Network?
No denying that the world is changing rapidly and becoming increasingly digital. People nowadays are knowledgeable workers who rely on fast connections to information stored in the cloud to do their jobs. Therefore, installing superfast FTTH broadband is an investment in equipping communities with the infrastructure they need to not just adapt to the present life, but to thrive in the future.
What’s more, the economic benefits of FTTH, for residents, businesses and the wider community are potentially enormous. While there are upfront costs in FTTH deployments, particularly around the last drop, equipment and methodologies are evolving to reduce these significantly. Fiber to the home is proven to increase customer satisfaction, and enables operators to offer new services, such as video on demand, 4K TV and smart home connectivity.
As well as bringing in economic benefits, FTTH broadband provides local businesses with the ability to expand, invest and seek new opportunities by providing rapid connections to major markets. All of this leads to increased investment in the rural economy, providing residents with more choice and stimulating growth.
What to Do?
Although deploying FTTH network might be similar cost as deploying copper network, there are some methods that you should know about reducing the costs of FTTH architecture. Adopting the following three principles helps achieve FTTH deployment, maximizing return on investment and dramatically reducing deployment times.
1. Reuse the Existing Equipment
Time and the total cost of FTTH deployment are typically relevant with the civil engineering side of the project, such as digging a new trench and burying a new duct within it. Where possible, crews should look to reuse existing infrastructure—often there are ducts or routes already in place that can be used for FTTH and in building deployments. These could be carrying other telecommunication cables, power lines, or gas/water/sewerage. Installing within these routes requires careful planning and use of cables and ducts that are small enough to fit through potentially crowded pathways. Figure 2 shows a generic point-multipoint architecture that fiber jumper plays an important part in it.
Additionally utilizing the push and pull cables in FTTH infrastructure simply reduce costs and install time as network installers can easily complete FTTH deployment by using pushing or pulling cables: pushing can be aided by simple, cost-effective handheld blowing machines, or pulled through the duct using a pre-attached pull cord. Even for more complex and longer environment, FTTH deployment can be quickly completed other than requiring expensive blowing equipment to propel the cable through duct.
2. Choose the Right Construction Techniques
If it is time to start digging, always make sure you use appropriate construction methods. The appropriate method will minimize cost and time by making construction work as fast and concentrated as possible, avoiding major disruption to customers or the local area. And remember to make sure you follow best practice and use the right fiber cable and duct that can fit into tight spaces and withstand the high temperatures of the sealant used to make roadways good.
The cable and duct used within FTTH implementations is crucial. Ensure that it meets the specific needs of deployments, and is tough, reliable and has a bend radius. It should be lightweight to aid installation and small enough to fit into small gaps and spaces in ducts. Also look to speed up installations with pre-connectorized cables that avoid the need to field fit or splice.
3. Minimize the Skills Required
Staff costs are one of the biggest elements of the implementation budget. Additionally, there are shortages of many fiber skills, such as splicing, which can delay the rate at which rollouts are completed. Operators, therefore, need to look at deskilling installations where possible, while increasing productivity and ensuring reliability. Using pre-connectorized fiber is central to this—it doesn’t require splicing and is proven to reduce the skill levels needed within implementations.
Conclusion
To cope with the digital world, the network is in constant need of enhancements and the increasingly stressed bandwidth and performance requires ongoing adjustment. Regardless of the FTTH architecture and the technology to the curb, the pressure is on for the network installer to deploy FTTH quickly and cost-effectively, while still ensuring a high quality, reliable installation that causes minimal disruption to customers and the local area. Fiberstore offers a variety of optical equipment that are suitable in telecom field. Our fiber optic cables are available in different optical connector, single-mode and multimode fiber as well as indoor or outdoor cables. For example, patch cord LC-LC are also provided.

What Will Affect the Longevity of Your Fiber Network?

When deploying a fiber network, people nowadays not only appreciate the high-speed broadband services, but the maintenance of how long it will last. After all, optical fiber is a particular type of hair-thin glass with a typical tensile strength that is less than half that of copper. Even though the fiber looks fragile and brittle, but if correctly processed, tested and used, it has proven to be immensely durable. With this in mind, there are essentially factors that will affect the longevity of your fiber network.
Installation Strains
Stress, on the other hand, is a major enemy of fiber longevity, so the protection task is passed to the cable installer, who will ensure that the use of suitable strength elements limits the stress applied to the cable to much less than the 1 per cent proof test level. The installer then needs to ensure that the deployment process does not overstrain the cable. Figure 2 below illustrates a typical crew deployment for a trunk installation. The whole process should be paid more attention to the stress.
Of the three techniques commonly used—pulling, pushing and blowing, only pulling creates undesirable stretching (tensile stress). Unlike metal, glass does not suffer fatigue by being compressed, and so the mild compression caused during pushing causes no harm to the fiber.
Surface Flaws
Optical fiber typically consists of a silica-based core and cladding surrounded by one or two layers of polymeric material (see in Figure 3). Pristine silica glass that is free of defects is immensely resistant to degradation. However, all commercially produced optical fibers have surface flaws (small micro-cracks) that reduce the material’s longevity under certain conditions. The distribution of flaws on the surface of the silica-based portion of the fiber largely controls the mechanical strength of the fiber. fiber-mart.COM fiber optic cables are well tested to ensure less surface flaws, like LC to ST fiber cable.
To conquer this, reputable fiber suppliers carry out proof testing, which stretches the fiber to a pre-set level (normally 1 per cent) for a specified duration to deliberately break the larger flaws. And the user is then left with a fiber containing fewer, smaller flaws that need to be protected from unnecessary degradation. This means primarily stopping the creation of new flaws by coating the fiber with a protective and durable material for its primary coating.
Environmental Factors
Once deployed, the local environment has a big impact on fiber life. Elevated temperatures can accelerate crack growth, but it is the presence of water that has been historically of most concern. The growth of cracks under stress is facilitated by water leading to “stress corrosion”. You can check what the tendency of a fiber to suffer stress corrosion is by reviewing its “stress corrosion susceptibility parameter”, much more conveniently referred to as “n”. A high n value (around 20) suggests a durable fiber and coating.
Calculating How Long Your Network Will Last
Bearing in mind the three factors above, how can you calculate the lifetime of your fiber network? In general, the chances of a fiber being damaged by manual intervention, such as digging, over the same time frame is about 1 in 1,000. Quality fiber, installed by benign techniques and by careful installers in acceptable conditions should, therefore, be extremely reliable – provided it is not disturbed.
It is also worth pointing out that cable lengths themselves have rarely failed intrinsically, but there have been failures at joints where the cable and joint type are not well matched, allowing the fibers to move – for example, due to temperature changes. This leads to over stress of the fiber and eventual fracture.
Conclusion
To tell the truth, the biggest enemies to the carefully engineered reliability of fiber jumper can be either humans or animals, rather than the fused silica itself. The provided fibers are stored and coiled correctly, it is quite possible that they turn out to be stronger than we at first thought and perhaps the original flaws begin to heal with time and exposure to water under low stress levels. fiber-mart.COM offers high quality fiber cable assemblies such as Patch Cords, Pigtails, MCPs, Breakout Cables etc. All of our products are well tested before shipment. If you are interested, you can have a look at it.

Difference Between Twisted Pair Cable and Coaxial Cable

A wire or cable is an indispensable element in communication system for connecting optical devices like optical transceivers, router and switch. Recently the most common cable types deployed in communication system are fiber optic cable, twisted pair cable and coaxial cable. Both twisted pair cable and coaxial cable are copper cables, so what’s the difference between them? This article may help you sort it out.
Twisted Pair
Twisted pair cables as the names implies, consists of a pair of cables twisted together, which has been utilized in telecommunication field for a long time. The twisting can avoid noise from outside sources and crosstalk on multi-pair cables, so this cable is best suited for carrying signals. Basically, twisted pair cable can be divided into two types: unshielded twisted-pair (UTP) and shielded twisted-pair (STP).
UTP is for UNshielded, twisted pair, while STP is for shielded, twisted pair. UTP is what’s typically installed by phone companies and data communication (though this is often not of high enough quality for high-speed network use) and is what 10BaseT Ethernet runs over. However, STP distinguishes itself from UTP in that it consists of a foil jacket which helps to prevent crosstalk and noise from outside source. It is typically used to eliminate inductive and capacitive coupling, so it can be applied between equipment, racks and buildings.
Coaxial cable is composed of an inner solid conductor surrounded by a paralleled outer foil conductor that is protected by an insulating layer. A coaxial cable has over 80 times the transmission capability of the twisted-pair. Coaxial cable has also been the mainstay of high speed communication and has also been applied to network with 10 Gigabit links data centers, because it is proved to be cost efficient for short links within 10 m and for residential network.
Comparison Between Twisted Cable and Coaxial Cable
Most people now are quite familiar with what coaxial cables are, as they are used in almost every home for cable television connections. These data cables are also popular in local area networks (LAN) because they are highly resistant to signal interference, which also gives coax cables the ability to support longer cable lengths between two devices.
The biggest advantage of twisted cables is in installation, as it is often thinner than coaxial cables and two conductors are twisted together. However, because they are thinner, they can not support very long runs. These tightly twisted designs cost less than coaxial cables and provide high data transmission rates. They connect with the RJ45 connector, which looks similar to a telephone jack but is designed for twisted pair pins.
In the end, twisted pair cabling is better suited when cost and installation are an issue and if EMI and crosstalk are not too much of a problem. But for coaxial cable, it supports greater cable lengths, and can be shielded in a variety of ways—with a foil shield on each conductor, a foil or braid inside the jacket or a combination of individual conductor and jacket shielding.
Additional Information About Fiber Optic Cables
Besides Twisted and coaxial cables, here comes a new generation of transmission media—fiber jumper. Fiber optic cables have a much greater bandwidth than metal cables, which means they can carry more data. They are also less susceptible to interference. For these two reasons, fiber optic cables are increasingly being used instead of traditional copper cables despite that they are expensive. Nowadays, two types of fiber optic cables are widely adopted in the field of data transfer—single mode fiber optic cables and multimode fiber optic cables.
Single mode optical fiber is generally adapted to high speed, long-distance applications. While a multimode optical fiber is designed to carry multiple light rays, or modes at the same time, which is mostly used for communication over short distances. Optical fiber cables are also available in various optical connectors, such as LC to SC patch cord, LC to ST fiber cable, SC FC patch cord, etc. The picture above shows a LC to SC patch cord.
Conclusion
Some engineers confirm that fiber optic cables is sure to be the dominant transmission media in telecommunication field, while others hold that copper cables will not be out of the stage. Thus, whether to choose fiber optic cables, twisted cables or coaxial cables, it is advisable for you to have a full understanding of your application before selecting these data cables. All types of Ethernet cables as well as fiber optic cables are provided at fiber-mart.COM. Our Quick Order Tool will help you find what you need. If you have any requirement of our products, please send your request to us.

How Should I Terminate My Fiber Optic Cable

In today’s day and age, we are more connected than ever. And we expect it.
At the work place we are attending virtual trainings on the latest technologies and we are connecting across the globe with our colleagues in real-time meetings – with just the click of a button.
When we leave work, we are going home using app-based scooters and bicycles that only needs the swipe of a cell phone. And if taking a highway home, you no longer search for change at a toll booth but instead you drive through a toll lane that scans and charges your account as you drive underneath it.
And it doesn’t stop at home. We are answering emails, while streaming Ultra HD video on our smart TV’s, all while having the latest super hero flick downloading on our tablet to watch on an upcoming business trip.
With the ever-increasing demand for the bandwidth needed to meet today’s expectations; how we design, install, and maintain our fiber optic networks must evolve with that same demand. In particular, the methods used to terminate, or connect, the ends of our fiber optic networks has evolved in the past 20 years quite drastically; starting with hand-polishing a ferrule with films and epoxies to achieve a finished termination. Hand epoxy polishing gave you a good, epoxy-cured connection but can be time consuming, and it took certain skill sets to achieve a good ferrule polish. Epoxy terminations lead to Mechanical Terminations which is the mechanical mating of fibers with the use of specific hand tools, v-groove alignment, and index matching gel to bridge the air gap between fibers. The benefits of using a factory-polished ferrule and the mechanical termination offered a time saving from traditional hand-polishing and allowed even some of the most novice of technicians the ability of putting a quality connector on in the field. As optical fusion splice machines and fusion splicing technology improved, technicians can now fusion splice a pigtail, a length of cable factory terminated on a single end, to a field cable that has been newly pulled or an old cable that needs to be repaired.
More importantly than any convenience of use though, is the performance of the termination. To enjoy some of the luxuries of connectivity mentioned before, we need a stronger optical signal to go farther than ever. Insertion Loss (IL) is a measurement of the optical power that is lost through a mated pair in decibels (dB). To compare the performance in IL of the three main termination methods, hand epoxy can typically range from .20dB – .75dB depending on installer. A typical mechanical style termination IL is 0.50dB, with loss accumulating from both the air gap of a mated pair, and the alignment of the fiber stub to your field fiber. Fusion splicing a pigtail or connector, is going to give your lowest loss of light through termination. Average fusion splice termination IL is .02dB – .05dB of loss through the splice, for a total of typical .20dB IL from your termination. By fusion splicing a connector in your network you are performing that much better in regards of your signal getting from source to receive.
Another important factor of your termination is how much light it reflects, you do not want your termination to be reflective. Reflectance is measured by how much light (dB) is returned back up the link, and the lower the number (farthest from 0) the better. The ferrule of your termination is the main factor in reflectance, and is categorized in 3 main stages: Physical Contact (PC), Ultra Physical Contact (UPC), and Angled Physical contact (APC). To throw a lot of numbers and letters around, PC polish typically has a reflectance of -30dB, UPC polish typical -40dB, and APC polish -65dB or better. Remember, the lower the number the least amount of reflection, so APC being -65dB is premium performance for optical termination because it returns the least amount of light per termination. Hand polishing connector does rely on skill, an experienced technician will be able to give you the best results but it still can be an imperfect science. Mechanical connectors allowed anybody to be able to put on a connector with the use of specific tools and simple termination procedures, but because of the reflectance of the matching gel, along with the mating of the ferrules, you will achieve around the -40dB referenced above. By being able to fusion splice a factory terminated pigtail to a field fiber, you achieve maximum performance of the ferrule polish due to the low reflectance fusion splice technology. A -65dB return loss on an APC termination is possible because a typical core alignment fusion splice is actually considered a non-reflective event. As we bring fiber closer and closer to the home, with lab environment transmission of 400gB of data over fiber, we can’t afford the return of light that our networks of days past allowed us.
With fusion splicing becoming the termination method of choice for performance, it’s now about installation and how we can make it easier. Pigtail splicing while practical, can be cumbersome with cable management and could require more rack space for that management. You prep your field fiber, you prep your pigtail, you splice them together and manage the slack, and you have a high performing termination.
The industry is now seeing Splice on Connectors as a popular choice of termination vs traditional pigtails because of the cost, space, and time savings they offer. Now you can use a factory terminated connector that can be spliced right at the end of your trunk cable, allowing a time savings in cable prep, a space saving without the excess length of traditional pigtails, and still giving your connection an Insertion Loss as low as .20dB, and a minimal return loss as low as -65dB. Splice on Connectors can arguably be your lowest cost, easiest to install, and best performing termination method.
In conclusion, I want to say that I am writing on my laptop while streaming a basketball game, my wife is streaming her reality TV while scrolling home improvement blogs on her phone, and our demand for bandwidth isn’t slowing down. As our use of technology evolves, so must our data networks. And in terms of how we terminate our fibers, the practice of using splice on connectors has us all trending in the right direction.

Fiber Optic Communication Systems: Safe and Reliable Solutions for Mining

What role does fiber optics play in the mining industry?
As technicians and professionals in this business know, the safe and reliable nature of fiber optics makes it the perfect communication solution for use in a wide variety of industries and mining in particular. The anti-spark, strong, fast, and reliable over long distances nature of fiber optic networks, solves many of the inherent problems of using non-fiber optic cables in hazardous situations. However, many in our industry still wonder specifically how is fiber optics used in mining?
HOW IS THE USE OF FIBER OPTICS A PERFECT SOLUTION FOR THE MINING INDUSTRY?
Thanks to lightning fast speeds, quick delivery, and reliable sensing capabilities, fiber optic technology has become an all-seeing and knowing element in underground mine operations. A fiber optic communication system installed in a mine will give real-time, accurate data on all the mining processes. Every second counts when equipment and personnel are below ground. An underground mine’s communication system must be capable of transmitting an error, a signal, or an event immediately over long distances so that safe control of the environment can be maintained.

WHAT DOES REAL-TIME MEAN?
The definition of real-time is “the time in which a physical process under computer study or control occurs.” In essence, real-time means immediately. When a signal is picked up, an event occurs, or a request is submitted it is delivered to the intended operator within milliseconds. If a dangerous situation deep in a mine cannot be handled immediately the worst might be realized.

WHAT IS MEANT BY LONG DISTANCES?
Historically, mining networks used multimode fiber in their communication networks. While multimode fiber can handle a large amount of bandwidth, the large core size of the multimode cable restricts the bandwidth-distance. Where huge networks are required, such as in a large-scale mining operation, multimode cables are of limited use. Additionally, multimode cable systems “have a significantly higher intrinsic light attenuation, or loss of optical power.” Singlemode fiber optic systems offer lower levels of intrinsic attenuation with higher bandwidth distances, creating clear and reliable real-time communications over very long distances. In a mining operation, a very long distance can mean many miles.

HOW DO FIBER OPTICS CREATE SAFETY IN MINING?
Mining is inherently dangerous, so having a responsive communication system is critical. Modern mines have been updated for increased volume output, are dug deeper into the earth, and have a greater focus on safety for all equipment and personnel. Safe and reliable fiber optic networks are the perfect solution for all types of enhanced communication needs in any mining operation.

Why is this true?
• The strands of glass in the fiber optic cable allow for high-speed data transmission with no associated hazards.
• One stray spark could cause a major explosion in a mine. With no electrical conductors in the fiber optic cables, the risk of sparks causing ignition of flammable gases is a non-issue.
• The glass in fiber optic cable eliminates cross-talk and other unwanted transfers of signals making them interference-proof. Clear communication is demanded in any hazardous situation.
• Fiber optic communication networks are designed to preserve the integrity of the system in extremely harsh conditions over extended periods of time. These systems provide safe and reliable vital links between the mine site and the control center.
•Fiber optic networks are immune to electromagnetic interference.

CAN FIBER OPTIC EQUIPMENT MEET STRENGTH REQUIREMENTS?
All elements of a fiber optic network used in mines, from the cable to the connectors, are built to withstand the mechanical strength and survival ability standards required to operate in a harsh underground environment. Fiber optic cables are rated by The Mine Safety and Health Association for:
• Impact and pull strength in installation and continued use.
• Crush resistance from mine tunnel cave-in.
• Extreme swing in temperature effectiveness.
• Protection from moisture and chemical incursion.
• Resistance to vibrations and other sound altering hazards.
• Protection from sparks and flame spread.

DO FIBER OPTICS MEET DEMANDS FOR INCREASED DATA CONVERGENCE?
A mining operation puts huge demands on its network. It must accommodate not only direct communication between personnel but also meet the data transmission demands of other communication features installed in the mine. The elements needed to create an effective control system and environmental monitoring network can only be created with fiber optic cables. In general, the minimum fiber optic system used in mining would include the following.

• A centralized control room that functions as the brains of the mining operation.
• Voice Over Internet Protocol phone and communication system above and below ground.
• A video surveillance system throughout the entire mining operation.
• Sensors to detect environmental hazards including fire and toxic gas buildup.
• A robust emergency communication system.
• Complex conveyor belt system controls.
• Immediate on/off capabilities operated through a remote system.
• Sensor monitoring and feedback.

HOW DOES A MINE EMERGENCY COMMUNICATION SYSTEM WORK?
The fiber optic backbone system has dedicated fibers used only for emergency communications. These fibers are labeled for emergency only in the cross-communication boxes dispersed along the mine shafts. These dedicated fibers go unused until an emergency event occurs. If the emergency requires search teams to enter the mine, the team can use a jumper stored in the boxes to tie the fiber through to the next box. Then they can plug their talk sets to the connectors and communicate with the control room safely and reliably.

In daily operations and for safety and security purposes, fiber optic sensors can be added to the backbone and monitored from a central and often remote location. These proximity sensors are anti-spark and can be attached to safety gates, doors, cabinets, barriers and other access and egress points. In addition to monitoring normal traffic throughout the mine, they are also an early warning system for locating emergencies and shortening response time. Proximity sensors can also be installed and used as call signals identifying the location of an emergency in seconds. Using a latch in the control system, the location is locked on even if the fiber is disturbed after the initial event.

WHAT IS MEANT BY COMPLEX CONVEYOR BELT CONTROL?
The purpose of creating a mine is to get the valued commodity out. A well-designed conveyor system that transports the goods to the surface is the lifeline of the mining operation. A mining conveyor belt system is very complex. It needs to run efficiently and smoothly with little downtime. Modern conveyor belt drive and motor systems are linked with fiber optic cables which offer a problem-free solution for operations.

Mining systems simultaneously perform these and other complex tasks during operations:

• The sequencing of start and stop functions of multiple connected motors.
• Controlling the smooth flow and separation of the mined product.
• Speed sensing for smooth operating control all along the conveyor.
• Correct angles for ascent and descent through the mine tunnels.
• Product weight distribution and load balancing to minimize power consumption.
• Fire and other safety hazard detection on the conveyor belt.

What is presented here is a basic understanding of why fiber optics are the perfect solution for use in any hazardous mining operation. Each mining operation is unique and requires expert analysis to create the ideal system. We know that fiber optics is always the reliable choice for most communication needs.

Fiber Optic Patch Cable – (color coding)

Fiber optic patch cable, is also known as fiber optic jumper or fiber optic patch cord which is composed of a fiber optic cable terminated with different connectors on the ends.
Fiber optic patch cable is used to cross-connect installed cables and connect communications equipment to the cable plant.It is a very important component of the network.
In general, fiber optic patch cables are classified by fiber cable mode or cable structure, by connector construction and by construction of the connector’s inserted core cover.
Fiber Cable Mode & Structure
According to the fiber cable mode, fiber optic patch cables are divided into two common types – Singlemode fiber patch cable and Multimode fiber patch cable. Singlemode fiber patch cables use 9/125 micron bulk single mode fiber cable and single mode fiber optic connectors at both ends. Singlemode fiber patch cable is generally yellow with a blue connector and a longer transmission distance. Multimode fiber patch cables use 62.5/125 micron or 50/125 micron bulk multimode fiber cable and terminated with multimode fiber optic connectors at both ends. It is usually orange or grey, with a cream or black connector, and a shorter transmission distance. According to the fiber optic cable structure, fiber optic patch cables include simplex fiber optic patch cable and duplex fiber optic patch cable. The former has one fiber and one connector on each end while the latter has two fibers and two connectors on each end. Each fiber is marked “A” or “B” or different colored connector boots are used to mark polarity.
Connector Construction
Connector design standards include FC, SC, ST, LC, MTRJ, MPO, MU, SMA, FDDI, E2000, DIN4, and D4. Fiber optic patch cables are classified by the connectors on either end of themselves. Some of the most common patch cable configurations include FC-FC, FC-SC, FC-LC, FC-ST, ST-LC, SC-SC, and SC-ST.
Construction of the Connector’s Inserted Core Cover
Fiber optic connectors are designed and polished to different shapes to minimize back reflection. This is particularly important in single mode applications. Typical back reflection grades are -30dB, -40dB, -50dB and -60dB. The connector’s inserted core cover conforms to APC (Typical back reflection <-60dB), UPC (Typical back reflection <-50dB), or PC (Typical back reflection <-40dB) configuration.
The buffer or jacket on patchcords is often color-coded to indicate the type of fiber used. In addition, color-coding of connectors for different fiber standards make it easy to avoid confusion.
Fiber Color Codes
Similar to the color coding designations of copper cabling, optical fiber has a color code designation for strands of fiber within the larger cable, as well as the cable’s jacket. These color codes are set by the EIA/TIA-598 standards guide identification for fiber and fiber related units that determines which color codes are used in which applications. The colors don’t only apply for the application though, they also are meant to be of use in determining a cables properties. The differences in colors are based upon different levels of OM and OS fiber (Optical Multimode & Optical Singlemode).
Optical fiber cable is separated into strands, which are the individual fibers within the larger piece of cabling. Up to 24 individual strands can be manufactured loosely, and after that point they are usually sectioned into tubes containing 12 each. Each tube containing 12 strands is then given a color.
Connector Color Codes
Since the earliest days of fiber optics, orange, black or gray was multimode and yellow singlemode. However, the advent of metallic connectors like the FC and ST made connector color coding difficult, so colored strain relief boots were often used.