OTDRを選択して使用するための最良の方法は?

 OTDRとは何ですか?

OTDR(光時間領域反射率計)は、新しく取り付けられたファイバーリンクをテストし、ファイバーリンクに存在する可能性のある問題を検出するために使用されます。その目的は、光ファイバーリンク上の任意の場所で要素を検出、特定、および測定することです。 OTDRは、リンクの一方の端にのみアクセスする必要があり、1次元レーダーシステムのように機能します。

OTDRで何を探すべきですか?

ファイバーテストは、ネットワークが最適化され、障害のない信頼性の高い堅牢なサービスを提供できるようにする上で重要な役割を果たします。

さまざまなテストと測定のニーズに対して、多数のOTDRモデルが存在します。それでは、適切なモデルを選択するにはどうすればよいでしょうか。 OTDRの仕様とアプリケーションを包括的に理解することは、選択を行うのに役立ちます。さらに、特定のニーズに基づいて、OTDRを探す前に次の質問に答える必要があります。

どのようなネットワークをテストしますか?

-P2P、P2MP、PONなど。

どのファイバータイプをテストしますか?マルチモードまたはシングルモード?

-これは、ケースに適した波長のOTDRから選択するのに役立ちます。

テストする必要があるかもしれない最大距離はどれくらいですか?

-それはOTDRのダイナミックレンジを参照します。トレース上にあるFOSCと接続の数を把握し、ケーブル自体からのdB / km損失を追加することで、必要性を計算できます。

どのような測定を行いますか?建設、トラブルシューティング、または稼働中ですか?

また、OTDRを選択するときは、次の要素を考慮に入れる必要があります。

ディスプレイサイズ—5インチがディスプレイサイズの最小要件です。ディスプレイが小さいOTDRはコストが低くなりますが、OTDRトレース分析がより困難になります

バッテリー寿命—OTDRはフィールドで1日使用できる必要があります。最短で8時間

トレースまたは結果ストレージ-128MBは、外部USBメモリスティックやSDカードなどの外部ストレージのオプションを備えた最小の内部メモリである必要があります

モジュール性/アップグレード可能性—モジュール性/アップグレード可能なプラットフォームは、テストニーズの進化により簡単に適合します。これは購入時に費用がかかる可能性がありますが、長期的にはより安価です

後処理ソフトウェアの可用性-テスト機器からファイバーを編集および文書化することは可能ですが、後処理ソフトウェアを使用してテスト結果を分析および文書化する方がはるかに簡単で便利です。

OTDR

結論

OTDRは、光インフラストラクチャの保守とトラブルシューティングに不可欠な光ファイバーテスターです。 OTDRを選択するときは、最初にOTDRが使用されるアプリケーションを把握し、次にOTDRの仕様をチェックしてアプリケーションに適しているかどうかを確認します。そして、この記事で述べた要素を考慮することを忘れないでください。あなたがあなたの決定をすることを躊躇するとき、それが助けになることを願っています。

WHAT ARE FIBER OPTIC ATTENUATORS AND HOW THEY WORK?

 Fiber optic attenuators are used in applications where the optical signal is too strong and needs to be reduced.

For example, in a multi-wavelength fiber optic system, you need to equalize the optical channel strength so that all the channels have similar power levels. This means to reduce stronger channels’ powers to match lower power channels. 

Another example is when the received optical power is so strong that it saturates the receiver, you need an attenuator to reduce the power so the receiver can detect the signal correctly.

This picture shows an example of a fixed optical attenuator. The attenuation level is fixed at 5 dB, which means it reduces the optical power by 5dB. This attenuator has a short piece of fiber with metal ion doping that provides the specified attenuation.

There are many different mechanisms to reduce the optical power, this picture shows another mechanism used in one type of variable attenuator. Here variable means the attenuation level can be adjusted, for example, it could be from 1 dB up to 20dB.

In this example, the light from the input fiber is expanded into a larger beam by the first collimating lens, then a blocking device, which could be a neutral density filter, is inserted into the light path to partially block the light, so only part of the light can pass through. Then the second collimating lens is used to focus the light back into the output fiber. When you move the blocking device inward or outward, you get different attenuation levels.

Fiber optic attenuators are usually used in two scenarios.

The first case is in fiber optic power level testing. Attenuators are used to temporarily add a calibrated amount of signal loss in order to test the power level margins in a fiber optic communication system.

In the second case, attenuators are permanently installed in a fiber optic communication link to properly match transmitter and receiver optical signal levels.

Optical attenuators are typically classified as fixed or variable attenuators.

Fixed attenuators have a fixed optical power reduction number, such as 1dB, 5dB, 10dB, etc.

Variable attenuators’ attenuation level can be adjusted, such as from 0.5 dB to 20dB, or even 50dB. Some variable attenuators have very fine resolution, such as 0.1dB, or even 0.01dB.

This slide shows many different optical attenuator designs.

The female to female fixed attenuators work like a regular adapter. But instead of minimizing insertion loss, it purposely adds some attenuation.

The female to female variable attenuators are adjustable by turning a nut in the middle. The nut adjusts the air gap in the middle to achieve different attenuation levels.

The male to female fixed attenuators work as fiber connectors, you can just plug in your existing fiber connector to its female side.

The in-line patch cable type variable attenuators work as regular patch cables, but your can adjust its attenuation level by turning the screw.

For precise testing purposes, engineers have also designed instrument type variable attenuators. These instrument type attenuators have high attenuation ranges, such as from 0.5 dB to 70dB. They also have very fine resolution, such as 0.01dB. This is critical for accurate testing.

Singlemode und Multimode von Glasfaser-Splittern

Der einfachste Koppler, Glasfaser-Splitter-Gerät. Glasfaserkoppler, auch als Strahlteiler bekannt, findet sich in einer bestimmten Aufteilung des Drahtes. Es ist wirklich in mehrere Strahlfaserbündel aufgeteilt, hängt von der optischen Leistungsverteilungsvorrichtung mit integriertem Wellenleiter des Quarzsubstrats ab, da das optische Netzwerksystem beim Koaxialkabelübertragungssystem auch die identische Verbindung zur Zweigverteilung und die Notwendigkeit einer Glasfaserverzweigungsvorrichtung darstellen muss aus dem optischen Signal, hier ist das wichtigste passive Glasfaserverbindungsgerät, das Gerät der Glasfaserserie bietet umfangreiche Ein- und Ausgangsterminals und Terminals, die insbesondere für passive optische Netzwerke (BPON, EPON, GPON, FTTX, FTTH usw.) mitteldichte Faserplatten (MDF) und der Anschlusszweig des Signalgeräts lassen sich auch mit Licht erreichen.

Ein Glasfaser-Splitter ist eigentlich ein Gerät, das nur ein Glasfasersignal aufnehmen und in mehrere Signale aufteilen kann. Glasfaser-Splitter sind wahrscheinlich die Schlüsselkomponenten von FTTH. Glasfaser-Splitter können mit verschiedenen Arten von Steckverbindern abgeschlossen werden, das Primärpaket kann ein Kastentyp oder ein Edelstahlrohr sein, Sie werden normalerweise mit Kabeln mit 2 mm oder 3 mm Außendurchmesser verwendet, ein anderer wird normalerweise mit Kabeln mit 0,9 mm Außendurchmesser kombiniert. Basierend auf dem Arbeitswellenlängenunterschied finden Sie Einzelfenster- und Doppelfenster-Glasfaserteiler. Es gibt Singlemode- und Multimode-Fasersplitter.

Wenn alle beteiligten Fasern mit dem Faserkoppler Singlemode sind, gibt es bestimmte physikalische Einschränkungen in Bezug auf die Leistung mit allen Kopplern. zum Beispiel ist es nicht einfach, zwei Eingänge derselben optischen Frequenz ohne signifikante Zusatzverluste zu einem einzigen Polarisationsausgang zu kombinieren. Ein faseroptischer Koppler, der zwei Eingänge mit unterschiedlichen Wellenlängen zu einem Ausgang kombinieren könnte, ist jedoch häufig in Faserverstärkern zu sehen, um den Signaleingang zusammen mit der Pumpwelle zu mischen.

Denken Sie daran, dass Faserkoppler nicht nur über Singlemode-Koppler, sondern zusätzlich über Multimode-Koppler verfügen. Multimode-Koppler werden aus Gradientenindexfasern mit Kerndurchmessern von 50 µm oder 62,5 µm hergestellt. Faseroptische Multimode-Koppler werden für die Kurzstreckenkommunikation bei 1310 nm oder 850 nm verwendet. Multimode-Koppler werden unter Verwendung einer Technik oder einer Fusionstechnik hergestellt. Sie werden für viele gängige Multimode-Fasern mit Kerndurchmessern von 50μm bis 1500μm vorgestellt.

Der größte Glasfaseranbieter fiber-mart.com bietet jetzt eine Auswahl an Glasfaser-Splittern an. Für weitere Informationen zu Glasfaser-Splittern rufen Sie uns bitte unter sales@fiber-mart.com an. Wir sind Ihre bessere Wahl für Fasersplitter.

MPO/MTP ASSEMBLIES – THE GAME CHANGER OF DATA CENTER CABLING

High-density data center is becoming the direction of the next generation data center. Today density is the key factor that determines the capacity of the facility. Parallel optics technology has become the transmission option of choice in many data centres as it is able to support 10G, 40G, and 100G transmission. For parallel optics to work effectively, it requires the right choice of cable and connector.

An optical fiber connector terminates the end of an optical fiber, and enables quicker connection and disconnection than splicing. The connectors mechanically couple and align the cores of fibers so light can pass. Better connectors lose very little light due to reflection or misalignment of the fibers. In all, about 100 fiber optic connectors have been introduced to the market. MPO/MTP® connector – “multi-fiber push on” technology with multi-fiber connectors offers ideal conditions for setting up high-performance data networks in data centers to handle future requirements.

MTP/MPO cabling assemblies, as an excellent solution for quick and reliable multi-mode fiber connectivity, provide an effective way for 40GbE and 100GbE network solutions, ensuring a high-performance and high-speed network

The MTP® connector is a registered trademark and design of UsConnec. It is also a kind of MPO connector but with a higher performance which provides some advantages over a generic MPO connector. Compared to generic MPO connector, MTP® is designed with multiple engineered product enhancements to improve optical and mechanical performance.

MT stands for mechanical transfer and an MT ferrule is a multi-fibre (usually 12 fibres) ferrule. The performance of the connector is determined by the fibre alignment and how this alignment is maintained after connection. Ultimately, the alignment is determined by the eccentricity and pitch of the fibre and how accurately the guide pins keep the fibres together during mating. The performance of any MPO connector can be improved if the tolerances of the pins and the moulding processes are reduced during manufacture.

Nowadays, a MPO/MTP® connector can support 2, 4, 8, 12 or 24 fibers, and even up to 72 fibers in the tiniest of spaces. MTP/MPO fiber cables fall on MTP/MPO trunk cables and MTP/MPO harness cables. As terminated with MTP/MPO connectors on one end and standard LC/FC/SC/ST/MTRJ connectors (generally MTP to LC) on the other end, these cable assemblies can meet a variety of fiber cabling requirements.

MTP/MPO CASSETTES

MTP/MPO cassettes are utilized to interconnect MTP/MPO backbones with LC/SC/ST/FC patching, and reduce installation time and cost for optical networking environments. They are able to provide secure transition between MTP/MPO and LC/SC/ST/FC connector. The standard MTP/MPO cassettes can accommodate 12 and 24 port configurations.

MTP/MPO CASSETTES FEATURES

High density easy-plug cassette modules

Simple to use, convenient installation: Pre-installed with fiber MTP/MPO adapters at the rear, and LC adapters in the front panel. Reduces cable load in raised floors to existing active server/switch/storage equipment with LC Duplex interface.

Field terminations Elimination: reduces labour cost and improves cabling manageability.

Available in 12 fiber and 24 fiber configurations, up to 36 duplex ports or up to 72 single-mode fibers. For example, a 10G system would utilise a single MPO / MTP (12 Fibre) connector between the 2 switches.

High performance zirconia sleeve adaptors.

Reliability -100% tested factory tested in a controlled environment.

The gender can be changed after assembly or even in the field giving flexibility at point of use.

The MTP connector has a metal pin clamp with features for centering the push spring

eliminates lost pins

centers the spring force

eliminates fibre damage from the spring mechanism

APPLICATIONS

Data centre infrastructure

Storage area network

Fibre channel

Parallel optics

Ultra High Density Fiber Management

Telecommunications networks and Broadband CATV networks.

LAN/WAN Premises

Therefore, parallel optics and MTP cabling have proven to be an excellent solution for delivering 10G, 40G and 100G transmission especially within a data centre environment. It provides a flexible, high density option for quickly connecting services and is a reliable high speed solution for many data networks.

Whether to Use EDFA Amplifier in Long WDM System Or Not?

Currently, utilizing WDM technology to deploy the optical network has received widespread attentions, which enables higher capacity for data transmission. However, the technology is also limited by the transmission distance. When deploying a long WDM system, the signal power would still become weak due to the fiber loss. In order to address the issue, using EDFA amplifier to directly enhance the WDM signals would be a good choice for current and future optical network needs. The optical network combining WDM technology and EDFA module together can transmit multiple signals over the same fiber, at lengths up to a few hundred kilometers or even transoceanic distances. To better know how does EDFA amplifier work in the long WDM system, let’s learn the EDFA amplifier knowledge and analyze the performance of WDM system bonding with the EDFA module.

Introduction to EDFA Amplifier

EDFA amplifier, also referred to as erbium-doped fiber amplifier, is basically composed of a length of Erbium-doped fiber (EDF), a pump laser, and a WDM combiner. When it works, the pump laser with 980 nm or 1480 nm and the input signal around 1550 nm can be combined by the WDM combiner, then transmitted and multiplexed into the Erbium-doped fiber for signal amplification. The pump energy can be transmitted in the same direction as the signal (forward pumping), or the opposite direction to the signal (backward pumping), or both direction together. And the pump laser can also using 980 nm or 1480 nm, or both. Taking the cost, reliability and power consumption into account, the forward pumping configuration with 980nm pump laser EDFA amplifier is always the first choice to enhance the signals for a long WDM system.

Analysis of WDM Network Without EDFA Amplifier

Before analyzing WDM network deployed with EDFA amplifier, it is necessary to know the basic configuration of an original WDM network, as shown in the figure below. We can learn that four signals from different channels are combined by the optical combiner. And then, the integrated signals are transmitted through an optical fiber. Thirdly, the signals are split into two parts by the splitter. One part passes through the optical spectrum analyzer for analyzing signals, and the other one goes through the photo detector to be converted into electrical signal and then be observed by the electrical filter and scope. However, in the process, the signal power gets highly attenuated after being transmitting at long distance.

Analysis of WDM Network Using EDFA Amplifier

By using the EDFA amplifier, we can easily overcome the attenuation of long WDM network. From the following figure, we can learn that EDFA amplifiers act as booster amplifier and pre-amplifier to enhance the signal, so that system will no longer suffer from losses or attenuation. Therefore, if you need to deploy a long WDM system, it is highly recommended to deploy the EDFA amplifiers in the system that features flat gain over a large dynamic gain range, low noise, high saturation output power and stable operation with excellent transient suppression. It is an undoubtedly ideal solution with reliable performance and relatively low cost to extend the WDM network transmission distance.

Conclusion

It is well know that the signal power would be greatly attenuated when the transmission distance is long enough. Hence, when deploying a long WDM network, it is definitely necessary to use the EDFA amplifier to enhance the signal strength, allowing for the long transmission distance. As a preferable option, the EDFA amplifier with very low noise is relatively insensitive to signal polarization and easy to realize signal amplification.

Bridge Copper to Fiber With PoE Media Converter

It’s common to see in modern society that many enterprise networks must support a wide range of installation environments located indoors and out. Considering this, a wide range of media converters and power supply options are important. And with the great benefits of fiber optic cables being accepted widely, PoE media converter seems to be a better choice for enterprise networks. Today this article intends to explain what PoE media converter can bring for managers and its applications.

PoE Media Converter Basis

PoE media converter is a type of fiber-to-copper media converter. It enables enterprises to power their network devices over the existing copper connections. With its PoE injector, PoE media converters can power devices like IP phones, video conferencing equipment, IP cameras and Wi-Fi devices over copper UTP cabling. Besides, they are available in a variety of multi-port configurations, including dual RJ-45 and dual fiber ports, and they can support fixed fiber connectors or SFP (Small Form Pluggable) transceivers.

Once PoE media converters are connected into network systems, they are usually close to the PDs (Power devices) like IP cameras and wireless access points. And when they work, fiber is run to the power source via the SFP socket, and PoE is distributed over UTP cabling to the power devices via RJ45 port.

Network Design Options Provided by PoE Media Converter

PoE media converters bring great benefits for network deployments. For example, they eliminate the need for power supply devices, power cables and outlets that would be required for remote device. In addition, they also provide flexible network design options. Here are some examples.

PoE Media Converter with Single Fiber Ports

As shown in the following picture, single fiber ports are deployed in star topologies with a point-to-point style layout with the fiber switch in the center of the network.

PoE Media Converter with Dual Fiber Ports

Option 1: daisy chain design. This design uses dual fiber ports to support connections in a liner daisy chain configuration. It suits long-haul applications along subways and rail lines.

Option 2: fiber ring design. In this fiber ring architecture, traffic can flow in both directions. In the picture below, a switch connects three PoE media converters to form a ring. If a fiber

failure occurs in it, the switch can reroute the traffic in the opposite direction.

Option 3: redundant fiber design. This network structure uses two fiber connections. One is active and carries the data traffic. The other is a protection fiber port that back-up a fiber failure switch-over of less than 50 milliseconds.

Applications of PoE Media Converter

As we all know, in order to break out the distance and bandwidth limitations of copper cables, fiber optic cable is a good alternative. PoE media converters can convert copper to fiber and provide power at the same time, making it popular among enterprise networks. There are three main applications of PoE media converters.

Fiber to IP cameras. The PoE media converters have fiber uplink ports and downlink ports. And in most applications, two IP cameras at each location can be connected through the dual RJ-45 ports of a PoE media converter.

Fiber to wireless access points. PoE media converters enable wireless access points to be installed in office buildings, airport, hotels, public areas or other places needed.

Fiber to the desktop. The PoE media converters provide fiber to copper media conversion, and they send data and power to desktop items such as IP phones and video conferencing equipment.

Summary

PoE media converters provide a cost-effective way to extend distances over fiber optic cabling to PoE powered devices (PDs). In this article, four network designs with PoE media converters and three applications of them are illustrated simply. If you want to know more details about PoE media converters, please visit fiber-mart.COM.

%d bloggers like this: