What is Fiber Optic Adapter

Fiber optic adapters (also known as Fiber couplers, Fiber Adapter ) are designed to connect two optical cables together. They have a single fiber connector (simplex), dual fiber connector (duplex) or sometimes four fiber connector (quad) versions. The optical fiber adapter can be inserted into different types of optical connectors at both ends of the optical fiber adapter to realize the conversion between different interfaces such as FC, SC, ST, LC, MTRJ, MPO and E2000, and is widely used in optical fiber distribution frames (ODFs) Instruments, providing superior, stable and reliable performance.

Features of Fiber Optic Adapter

The optical fibers are connected by an adapter through its internal open bushing to ensure the maximum connection between the optical connectors. In order to be fixed in a variety of panels, the industry also designed a variety of finely fixed flange.

Transformable optical adapters are available with fiber optic connectors of different interface types on both ends and provide a connection between APC faceplates. Duplex or multi-adapter adapts to increase installation density and save space.

Fiber Optic Adapter types

FC Fiber Optic Adapter

This fiber optic adapter was first developed by Japan NTT. FC is an acronym for FERRULE CONNECTOR, indicating that its external reinforcement is the use of the metal sleeve, fastening the way for the buckle. The earliest, FC type connector, the docking end of the ceramic pin. Such connectors are simple in structure, easy to operate and easy to manufacture. However, the fiber end face is more sensitive to dust, and it is easy to produce Fresnel reflection and it is difficult to improve the return loss performance. Later, this type of connector has been improved, the use of docking the spherical end of the pin (PC), while the external structure has not changed, making the insertion loss and return loss performance has been greatly improved.

SC Fiber Optic Adapter

This is a kind of optical fiber connector developed by Japan NTT Corporation. The shell is rectangular, the pin and the coupling sleeve used in the structure of the same size and FC type. One end of the pin to use more PC or APC grinding method; the casting method is the use of plug pin type, without rotation. Such connectors are inexpensive, easy to plug and unplug, low insertion loss variations, high compressive strength, and high installation density.

DIN47256 Fiber Optic Adapter

This is a connector developed by Germany. The pins and coupling sleeves used in this connector are the same size as the FC type and the PC process is used for the end face processing. Compared with the FC type connector, the structure is more complex, and the internal metal structure has a control pressure spring to prevent the end face from being damaged due to the excessive insertion pressure. In addition, this connector has higher mechanical accuracy and therefore smaller insertion loss values.

MT-RJ Fiber Optic Adapter

MT-RJ started with the MT connector developed by NTT with the same latching mechanism as the RJ-45 type LAN electrical connector. Alignment of the optical fiber with guide pins mounted on both sides of the small bushing made it easy to communicate with the optical transceiver Machine connected to the connector end of the optical fiber for the dual-core (0.75MM spacing) array design is mainly used for data transmission next generation high-density fiber optic connectors.

LC Fiber Optic Adapter

The lc-type connector is a well-known BELL (Bell) Institute of research and development, the use of convenient modular jack (RJ) latch mechanism made. The pins and sleeves used are half the sizes used for normal SC, FC, etc., at 1.25mm. This will increase the density of fiber optic connectors in fiber distribution frames. Currently, in the single-mode SFF, LC type of connector has actually occupied the dominant position, the application of multi-mode is also growing rapidly.

MU Fiber Optic Adapter

The MINIATURE UNIT COUPLING connector is the world’s smallest single-core fiber optic connector developed by NTT based on the currently used SC-type connector. The connector uses a 1.25MM diameter sleeve and self-holding mechanism, the advantage is that it can achieve high-density installation. NTT has developed the MU connector family with MU’s L.25MM diameter bushings. They have socket type connectors for optical cable connections; backplane connectors with the self-holding mechanism and simplified sockets for connecting LD / PD modules and plugs Wait. Demand for MU-type connectors will also grow rapidly as fiber-optic networks become more capable of larger bandwidths and DWDM technologies are widely used.

MTP/MPO Fiber Optic Adapters

Unlike the single-core SC fiber optic adapters, the SC fiber optic adapters are internally equipped with a ceramic ferrule that is precisely aligned through the ferrule when the SC connector ferrule is connected, while the MPO / MTP adapter is connected using an MPO / MTP Precise connection of two guide holes with a diameter of 0.7mm and a guide pin on the left and right ends of the ferrule. MPO / MTP adapters are widely used in communication system base stations, optical fiber distribution frames (ODFs) in building rooms, MPO / MTP cassette module, and various test instruments.

What is a fiber optic coupler?

Fiber optic coupler is used to split the fiber optic light into several parts at a certain ratio. fiber optic coupler are important passive components used in FTTX networks. A fiber-optic splitter is a device that takes a single fiber optics signal and divides it into multiple signals. Fiber optic is a type of technology that uses an optical signal instead of an electrical one to send data from one place to another. The cable is made either of glass or plastic coated in plastic, instead of the copper wire that was commonly used in the past. But two kinds of fiber splitters are popular used, one is the traditional fused type fiber optic coupler (FBT coupler), which features competitive prices; the other is PLC fiber optic coupler, which is compact size and suit for density applications. Both of them have its advantages to suit for different requirement. The use of fiber optic technology has become increasingly popular for several reasons. Fiber optic cables are much less sensitive to electrical interference, marking them more reliable than older types of cabling. They are also able to carry very large amounts of data in comparison with that older systems can handle. This makes them very efficient, despite the facts that there are some drawbacks to the system. The cables  require a thicker covering to protect the optical cables and they also need to have repeaters installed to boost the signal strength in order for the system to work, two hindrances to the use of this technology.

Despite the limitations, fiber optics technology is in use for both home and commercial applications. The most common type of fiber optic coupler splits the output evenly, with half the signal going to one leg of the output and half going to the other. It’s possible to get splitters that use a different split ratio, putting a larger amount of the signal to one side of the splitter than the other. The Splitters are identified with a number that represents the signal division, such as 50/50 if the split is even, or 80/20 if 80% of the signal goes to one side and only 20% to the other.

Some types of the fiber optic coupler are actually able to work in either direction. This means that if the device is installed in one way, it acts as a splitter and divides the incoming signal into two parts, sending out two separate outputs. If it is installed in reverse, it acts as a coupler, taking two incoming signals and combing them into a single output. Not every fiber optic coupler can be used this way, but those that can are labeled as reversible or as coupler/splitters.

Fiber Optic Collimator Lens Assembly Global Market Forecast

a leading market research & technology forecast consultancy addressing the fiber optics communications industry, today announced the release of a new market forecast of the global market consumption and technology trends of commercial (non-military) fiber optic collimating lens assemblies, which are used in optical communication applications.

The market study covers single lens assemblies, 2-12 lens arrays, and arrays with more than 12 lenses. Both of the lens array categories are forecast with strong growth rates of more than 45% per year (2013-2018).  Single lens fiber optic collimator assemblies hold the global market share lead in the selected optical communication applications covered in the ElectroniCast study.

“Collimator lenses (and lens assemblies) are used in a variety of photonic products; however this market study forecasts the use of micro-sized collimator lens assemblies, which are used specifically in optical communication components/devices. Fiber optic collimator lens assemblies serve as a key indicator of the growth of the fiber optic communication component industry,” said Stephen Montgomery, Director of the Fiber Optic Component group at the California-based consultancy.

ElectroniCast defines lens assemblies as lenses (one or more), which are attached to an optical fiber or fitted/attached into (or on) a planar waveguide/array substrates or other device(s) for the purpose of collimating light for optical fiber communication.

The global consumption of fiber optic collimator lens assemblies, which are used in commercial optical communication applications, reached $264.2 million last year in 2013 and is forecast to reach $298.4 million this year (2014), an increase of 12.9%.    The American and APAC regions are forecast to remain relatively close together in relative consumption value market share.  The Europe, Middle East and Africa regional segment (EMEA) is forecast with the fastest average annual growth rate during the forecast period.  Market forecast data in the ElectroniCast report refers to consumption (use) for a particular calendar year; therefore, this data is not cumulative data.

Fiber optic collimator lens assemblies are widely used to covert a divergent output laser beam from a fiber or waveguide into an expanding beam of parallel light; therefore, they are used in a variety of optical communication components, such as: modulators, attenuators, transmitters, pump laser modules, switches/optical cross connects, wavelength selective switches, ROADMs, isolators, circulators, expanded-beam connector assemblies, optical filter modules, DWDM, tunable filters, optical sensors, optical signal processing, integrated/hybrid packaged modules, and other active and passive components and devices.

What Is a Fiber-Optic Multiplexer?

A fiber-optic multiplexer is a device that processes two or more light signals through a single optical fiber, in order to increase the amount of information that can be carried through a network. Light wavelengths are narrow beams that ricochet through reflective optical tubing, sometimes over long distances, to provide instantaneous electronic signal processing at the speed of light. Multiplexers work by increasing a fiber’s transmission capacity using different techniques and light source technologies. When the signal arrives at its destination, a demultiplexer separates the data streams. Using a multiplexer also allows data to be sent farther, more securely, and with less electromagnetic and radio frequency interference.

Also known as a mux, the fiber-optic multiplexer saves time and cost by squeezing more information through the optical network pathway. It is possible to split signals by varying the schedule or period of each transmission. Time Division Multiplexing (TDM) combines multiple signals by rapidly alternating between them so that only one is transmitting at any given time. Statistical Time Division Multiplexing (STDM) assigns each signal a specific time slot in order to optimize bandwidth usage. Further techniques include divisions of wavelength and frequency.

Wavelength Division Multiplexing (WDM) utilizes the total available pass band of an optical fiber. It assigns individual information streams different wavelengths, or portions of the electromagnetic spectrum. Similarly, Frequency Division Multiplexing (FDM) assigns each signal a different frequency. Carrier frequencies contain the signal while unused guard frequencies provide buffering to reduce interference. This helps minimize audible and visual noise and preserves the integrity of the original signal throughout the network.

Fiber-optic multiplexer technology serves single-mode and multimode optical fibers with multichannel rack mount or standalone units. This makes mixing channels with different configurations possible for a range of interface combinations. These devices provide stronger, more reliable transmissions in areas that have a lot of electromagnetic, radio frequency, or lightning interference.

As technology improves and information needs grow to fill the capacities of existing networks, equipment such as the fiber-optic multiplexer lessens the need to upgrade the fiber-optic infrastructure itself. Multiplexers permit new configurations of transmission protocols by increasing the amount of wavelengths or frequencies of light signals. By upgrading repeaters and terminal equipment, existing network transmission capacity can expand with demand.

Used by cellular carriers, Internet service providers, public utilities, and businesses, fiber-optic multiplexer technology extends the reach and power of telecommunications technologies. Network management systems allow for system service and maintenance, and provide for security, fault management, and system configuration. With advantages like lower costs and longer life expectancies, current fiber-optical networks are aided by improvements in multiplexing technology, and may provide light speed data transmission well into the future.

LC Connector and LC Attenuator

A fiber optic connector terminates the end of an optical fiber and enables quicker connection and disconnection than splicing. The fibers are mechanically coupled and aligned to ensure that light can pass.

There has been many different connectors introduced through the development of fiber optic components previously many years. A lot of companies and individuals happen to be trying to improve the options that come with certain connectors to be able to gain control of the fiber optic industry, but only few have been successful. As technology increases, various fiber optic components have become less expensive.

There are various color codes for connectors and they have changed throughout the years. In early stages of fiber optic history, orange, black or grey represented multimode connectors and yellow represented single mode. These original codes became complicated with the introduction of metallic connectors so colored boots were developed, like FC and ST. Now, beige boots stand for multimode, blue means single mode and APC or angled connectors are represented by green boots.

The LC connector is a universal connector. It is available in simplex and duplex configurations and is half how big the SC and utilizes a 1.25mm ferule. The LC is highly favored for single mode and is easily terminated with an adhesive. They’re actively replacing the SC connectors in corporate environments due to their smaller size.

Built on style with LC, LC attenuators really are a combination of a connector on a definite end, as well as an adapter on the other. This enables so that it is “plugged-in” to just about any LC adapter. The assembly contains a ferrule that’s accessible in standard Polish connectors (PC) and 8 degree angle Polish (APC). They’re backward suitable for existing transmission equipment, while the APC attenuators provide superior reflection required for high power and analog equipment. LC fiber optic attenuators are designed to provide horizontal spectral attenuation over the full spectrum vary from 1280nm to 1624nm. This way the LC attenuators expand the capability of optical networks by enabling using the E-band (1400-nm window) for optical transmission.

LC fiber optic attenuator is a passive device accustomed to reduce light signal intensity without significantly changing the waveform itself. It provides a type of metal-ion doped fiber which reduces the noiseless signal because it passes through. This process of attenuation allows for higher performance than fiber splices or fiber offsets or fiber clearance, which function by misdirecting rather than absorbing the joyful signal. This is often a requirement in Dense Wave Division Multiplexing (DWDM) and Erbium Doped Fiber Amplifier (EDFA) applications in which the receiver can’t accept the signal produced by a high-power light source.

LC fiber optic attenuators are key in controlling manipulating the electricity of an optical path in fiber optic telecommunication systems. LC Build-on fiber optic attenuators are used to reduce excess optical power from the transmitter that can result in over-saturation of the receiver.

These optical attenuators feature simple and rugged structure utilizing ion doped fiber because the attenuating material. They can be placed directly on the active equipment and therefore are able to withstand over 1W of extraordinary power light exposure for longer periods of time, which makes them well-suited to EDFA and other high-power applications.

Some Info About Fiber Optic Multiplexer Technology

In the long-distance optical fiber transmission, the fiber cables have a small effect on the optical signal transmission, the transmission quality of optical fiber transmission system mainly depends on the Optical Fiber Multiplexer’ quality, because optical multiplexer is responsible for electrical/optical and optical/electric conversion and optical transmitting and receiving. Optical fiber multiplexer as terminal equipment of transmission optical signal, usually used in pairs, divided into optical receiver and optical transmitter, optical transmitter is used to convert electrical signals into optical signals to realize electrical/optical conversion, and the optical signal input optical fiber transmission. Optical receiver is used to restore a in the optical fiber for optical signal into electrical signal to realize optical/electric conversion. It’s fit and unfit quality directly affects the whole system, so you need to know something about the performance and application of the fiber optic multiplexers, it can help you better configuration and procurement.

What is video multiplexer?

Fiber optic video multiplexer is used to transform video signals to fiber optic signals, it is analog fiber optic video multiplexer and digital video multiplexer, the digital one is more and more used and it is the popular model in current market. This product is generally used in security applications to control and monitor the video camera signals.

Fiber Optic Multiplexer Technology:

Fiber optic multiplexer technology serves single-mode and multimode optical fibers with multichannel rack mount or standalone units. Multiplexers aren’t only for connecting multiple devices across a network. Multiplexers are also commonly used to distribute data from a SONET core, allowing for the distribution of DS-1, DS-3, and other circuit mode communications to several devices throughout a network. Again, this allows for multiple devices to share an expensive resource.

Used by cellular carriers, Internet service providers, public utilities, and businesses, fiber optic multiplexer technology extends the reach and power of telecommunications technologies. Network management systems allow for system service and maintenance, and provide for security, fault management, and system configuration. With advantages like lower costs and longer life expectancies, current fiber-optical networks are aided by improvements in multiplexing technology, and may provide light speed data transmission well into the future. Multiplexed systems also simplify system upgrades since numbers of channels and channel bandwidth is a function of the electronics rather than the transmission line or components.

Feature Of Optical Multipexer:

fiber-mart.com fiber optic video multiplexer adopts the international advanced digital video and optical fiber transmission technology, these fiber optic multiplexers are various models and can be custom made according to customers’ requirement. Our products can transmit from 1 channel video signal to max 64 channel video signals in different optional distances. They can be with optional audio channel and reverse data channel. Interfaces can be RS232, RS422 or RS485. Fiber optic ports are typical FC, with SC or ST optional. The fiber optic video multiplexers are single mode types and multimode types, used with different kinds of optical fiber lines. We provide some types of optical multiplexers, including video multiplexers, video & data multiplexers, video & audio multiplexers, video & data & audio multiplexers, PDH multiplexer, and we supply optical multiplexer in different channels, such as 1, 2, 4, 8, 16, 24, 32 channels.