Brief introduction of DWDM Technology and DWDM System Components

Telecommunications makes wide use of optical techniques in which the carrier wave belongs to the classical optical domain. The wave modulation allows transmission of analog or digital signals up to a few gigahertz (GHz) or gigabits per second (Gbps) on a carrier of very high frequency, typically 186 to 196 THz. In fact, the bitrate can be increased further, using several carrier waves that are propagating without significant interaction on a single fiber. It is obvious that each frequency corresponds to a different wavelength. Dense Wavelength Division Multiplexing (DWDM) is reserved for very close frequency spacing. This blog covers an introduction to DWDM technology and DWDM system components. The operation of each component is discussed individually and the whole structure of a fundamental DWDM system is shown at the end of this blog.

Introduction to DWDM Technology

DWDM technology is an extension of optical networking. DWDM devices (multiplexer, or Mux for short) combine the output from several optical transmitters for transmission across a single optical fiber. At the receiving end, another DWDM device (demultiplexer, or Demux for short) separates the combined optical signals and passes each channel to an optical receiver. Only one optical fiber is used between DWDM devices (per transmission direction). Instead of requiring one optical fiber per transmitter and receiver pair, DWDM allows several optical channels to occupy a single fiber optic cable. As shown below, by adopting high-quality AAWG Gaussian technology, FS DWDM Mux/Demux provides low insertion loss (3.5dB typical), and high reliability. With the upgraded structure, these DWDM multiplexers and demultiplexers can offer easier installation.

A key advantage of DWDM is that it’s protocol and bitrate independent. DWDM-based networks can transmit data in IP, ATM, SONET, SDH and Ethernet. Therefore, DWDM-based networks can carry different types of traffic at different speeds over an optical channel. Voice transmission, email, video and multimedia data are just some examples of services that can be simultaneously transmitted in DWDM systems. DWDM systems have channels at wavelengths spaced with 0.4nm or 0.8nm spacing.

DWDM is a type of Frequency Division Multiplexing (FDM). A fundamental property of light states that individual light waves of different wavelengths may coexist independently within a medium. Lasers are capable of creating pulses of light with a very precise wavelength. Each individual wavelength of light can represent a different channel of information. By combining light pulses of different wavelengths, many channels can be transmitted across a single fiber simultaneously. Fiber optic systems use light signals within the infrared band (1mm to 750nm wavelength) of the electromagnetic spectrum. Frequencies of light in the optical range of the electromagnetic spectrum are usually identified by their wavelength, although frequency (distance between lambdas) provides a more specific identification.

DWDM System Components

A DWDM system generally consists of five components: Optical Transmitters/Receivers, DWDM Mux/DeMux Filters, Optical Add/Drop Multiplexers (OADMs), Optical Amplifiers, Transponders (Wavelength Converters).

Optical Transmitters/Receivers

Transmitters are described as DWDM components since they provide the source signals which are then multiplexed. The characteristics of optical transmitters used in DWDM systems is highly important to system design. Multiple optical transmitters are used as the light sources in a DWDM system. Incoming electrical data bits (0 or 1) trigger the modulation of a light stream (e.g., a flash of light = 1, the absence of light = 0). Lasers create pulses of light. Each light pulse has an exact wavelength (lambda) expressed in nanometers (nm). In an optical-carrier-based system, a stream of digital information is sent to a physical layer device, whose output is a light source (an LED or a laser) that interfaces a fiber optic cable. This device converts the incoming digital signal from electrical (electrons) to optical (photons) form (electrical to optical conversion, E-O). Electrical ones and zeroes trigger a light source that flashes (e.g., light = 1, little or no light =0) light into the core of an optical fiber. E-O conversion is non-traffic affecting. The format of the underlying digital signal is unchanged. Pulses of light propagate across the optical fiber by way of total internal reflection. At the receiving end, another optical sensor (photodiode) detects light pulses and converts the incoming optical signal back to electrical form. A pair of fibers usually connect any two devices (one transmit fiber, one receive fiber).

DWDM systems require very precise wavelengths of light to operate without interchannel distortion or crosstalk. Several individual lasers are typically used to create the individual channels of a DWDM system. Each laser operates at a slightly different wavelength. Modern systems operate with 200, 100, and 50-GHz spacing. Newer systems that support 25-GHz spacing and 12.5-GHz spacing are being investigated. Generally, DWDM transceivers (DWDM SFP, DWDM SFP+, DWDM XFP, etc.) operating at 100 and 50-GHz can be found on the market nowadays.

DWDM Mux/Demux Filters

Multiple wavelengths (all within the 1550 nm band) created by multiple transmitters and operating on different fibers are combined onto one fiber by way of an optical filter (Mux filter). The output signal of an optical multiplexer is referred to as a composite signal. At the receiving end, an optical drop filter (DeMux filter) separates all of the individual wavelengths of the composite signal out to individual fibers. The individual fibers pass the demultiplexed wavelengths to as many optical receivers. Typically, Mux and Demux (transmit and receive) components are contained in a single enclosure. Optical Mux/DeMux devices can be passive. Component signals are multiplexed and demultiplexed optically, not electronically, therefore no external power source is required. The figure below is bidirectional DWDM operation. N light pulses of N different wavelengths carried by N different fibers are combined by a DWDM Mux. The N signals are multiplexed onto a pair of optical fiber. A DWDM Demux receives the composite signal and separates each of the N component signals and passes each to a fiber. The transmitted and receive signal arrows represent client-side equipment. This requires the use of a pair of optical fibers; one for transmit, one for receive.

Author: Fiber-MART.COM

eShop of Fiber Optic Network, Fiber Cables & Tools

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s