Optical Facility Protection for WDM Network

Posted by

by http://www.fiber-mart.com

Wavelength-division multiplexing (WDM) is nothing new to us. It is a technology that multiplexes multiple optical signal on a single optical fiber by using different wavelengths of laser light. The multiple transmission paths involved in WDM network effectively relieve fiber exhaustion and extend link capacity, but they also make facility protection more essential than ever, because solid facility protection is the key to the availability of the link and the data being transmitted. This article introduces two methodologies that proven to be valid for optical link protection: electrical switching and optical switching.
Why Facility Protection is Essential to WDM Network?
With the explosion of information, the demand for extremely high-capacity data transmission began to soar. Enterprises and companies were asked to deliver greater volumes of traffic at much higher rates. Which spurs the need to store data in different facilities and to transport these data over different paths, so that if any network failure or downtime occurs, they can soon recover and keep the business running. In a properly protected WDM network, customers will have two or more sites that are connected to each other by diver paths, ensuring the availability and reliability of the network all the time. But fiber may break for many reasons including damage from the physical environment and human faults. Thus facility protection becomes vitally important.
Effective Facility Protection Methods for WDM Network
There are basically two methods for optical facility protection: one is electrical switching which adopts a cross connect to duplicate and select the working or protecting path, with two independent optics involved per each path and two Mux/Demux. And the other is optical switching, unlike electrical switching, it typically uses an optical switch to select the working or protected path.
Electrical Switching
In electrical switching, each service is simultaneously transmitted and received from two dark fibers. The signal from the device on the left side is transmitted to both working and protecting fiber, then it is delivered to the end device on the right side.
So how the cross connect duplicates the Tx signals and selects the working and protecting path (Rx) for the receiving signal? In fact, the Tx signal is sent through the cross connect and duplicated through both transponders. On the Rx direction, the cross connect switches the signal to the receiving optical power of the transponder.
Optical Switching
An optical switch is involved in this method to duplicate the data to the working and protecting fiber with an optical splitter, and selecting the operating fiber according to the optical power signals of all the services. One of the distinct differences between optical switching and electrical switching is that it simply offers no protection for the WDM optic.
Electrical Switching vs. Optical Switching: How to Choose?
When applied for optical facility protection, both methods have their benefits and drawbacks. For electrical switching, the WDM optic is better protected since it uses two uplink transponders per service – one for working and the other for protecting. Since protection is delivered per service, once a single service needs to be switched, the other service won’t be disturbed. Moreover, electrical switching is suited for any network topologies, and no power budget loss is associated with this method. However, electrical switching generally adopted more WDM optics and an additional Mux/Demux, hence fewer services are available through each unit, and it inevitably increases total costs.
While for optical switching which does not offer protection for WDM optic, more ports are available to transport services on each unit. Besides, no additional Mux/Demux is required in this method, so the overall cost of the solution can be decreased. The drawbacks of this method are that the optical switch lowers the optical power budget of the link. And optical switching is not suited for ring topologies for the fact that add and drop functionality is not available per wavelength.
Conclusion
Optical facility protection impacts the link availability, performance and reliability to a large extent. Your choice on facility protection method should always base on your specific needs, and taking power budget, network topology and cost into consideration. I hope this article would be helpful for you to make an informed decision.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s