MPO/MTP Fiber Cabling Basics

by http://www.fiber-mart.com

With the ever increasing need for even greater bandwidth in data centers, multi-mode fiber cables (MMFs) have proven to be a practical optical solution to support such fast-changing and fast-growing bandwidth demand. MTP/MPO fiber cabling, ideal for quick and reliable MMF connectivity, provide an effective way for 40GbE network solutions, ensuring a high-performance and high-speed network. This blog includes basic information about MPO/MTP fiber cabling solutions.
MTP/MPO Connector Background
The term MTP is a registered trademark of US Conec used to describe their connector. The US Conec MTP product is fully compliant with the MPO standards. As such, the MTP connector is a MPO connector.
MTP/MPO Fiber Cabling System Introduction
MTP/MPO fiber cables, as an important part of the MPO/MTP cabling system, are designed to go on reliable and quick operations for the multi-fiber connection system in data centers. Each MTP fiber cable contains 12 fibers or 6 duplex channels in a connector, thus requiring less space. Besides, MTP/MPO fibers are manufactured with outstanding optical and mechanical properties, which makes them able to offer more improved scalability. What’s more, it is easy to have cable management and maintenance on them. Generally speaking, MTP/MPO fiber cables can save a lot of money and space to some extent.
MTP/MPO Fiber Cabling Categories
When it come to types, MTP/MPO fiber cables fall on MTP/MPO trunk cables and MTP/MPO harness cables.
MTP/MPO trunk cables, available in 12-144 counts, are intended for high-density application. By using MTP/MPO trunk cables, the installation of a complete fiber optic backbone is accessible without any field termination.
MTP/MPO harness cables, also called MTP/MPO breakout cables or MTP/MPO fanout cables, available in 8-144 counts, are used for breaking out the MTP into several connections. They provide connection to equipment or panels that are terminated with other standard connectors. As terminated with MTP/MPO connectors on one end and standard LC/FC/SC/ST/MTRJ connectors (generally MTP to LC) on the other end, these cable assemblies can meet a variety of fiber cabling requirements.
MPO/MTP Fiber Cabling for 40GbE
The Institute of Electrical and Electronics Engineers (IEEE) 802.3ba 40 Ethernet Standard was ratified in June 2010. The IEEE 802.3ba standard specifies MPO connectors for standard-length MMF connectivity. MMF employs parallel optics using MPO interconnects for 40GbE transmission. More specifically, 40G is implemented using eight of the twelve fibers in a MPO connector. Four of these eight fibers are used to transmit while the other four are used to receive. Each Tx/Rx pair is operating at 10G.
fiber-mart MPO-based fiber cabling solutions provide a fast , simple and economical way for 40G applications. Certainly, fiber-mart 40G fiber cabling solutions are not limited to MPO/MTP fiber cables. Copper cables are also recommended. Take CAB-Q-Q-1M for example, Arista CAB-Q-Q-1M is the QSFP+ to QSFP+ passive copper cable assembly for 40G links. Or one of other fiber-mart 40G fiber cabling products: JG329A, fiber-mart compatible HP JG329A runs over passive breakout copper cable for 40-gigabit links.
MTP/MPO Jumpers
The MTP jumpers serve to create the connection between the device ports and the structured cabling via the connector panel.

Choose Duplex Fiber or MPO/MTP Fiber for 40G Solutions?

by http://www.fiber-mart.com

There’s been a lot of talk lately surrounding bidirectional 40 Gb/s duplex applications, or BiDi for short. Currently offered as a solution by Cisco®, BiDi runs over duplex OM3 or OM4 multimode fiber using QSFP modules and wavelength division multiplexing (WDM) technology. It features two 20 Gb/s channels, each transmitting and receiving simultaneously over two wavelengths on a single fiber strand – one direction transmitting in the 832 to 868 nanometer (nm) wavelength range and the other receiving in the 882 to 918 nm wavelength range. Avago Technologies also offers a similar QSFP BiDi transceiver.
Unidirectional 40 Gb/s duplex fiber solutions are available from Arista and Juniper. These differ from the BiDi solution in that they combine four 10 Gb/s channels at different wavelengths – 1270, 1290, 1310, and 1330 nm – over a duplex LC connector using OM3 or OM4 multimode or singlemode fiber. These unidirectional solutions are not interoperable with BiDi solutions because they use different WDM technology and operate within different wavelength ranges.
While some of the transceivers used with these 40 Gb/s duplex fiber solutions are compliant with QSFP specifications and based on the IEEE 40GBASE- LR4 standard, there are currently no existing industry standards for 40 Gb/s duplex fiber applications using multiple wavelengths over multimode fiber – either bidirectional or unidirectional. There are standards-based 40 Gb/s applications over duplex singlemode fiber using WDM technology, but standards-based 40 Gb/s and 100 Gb/s applications over multimode use multi-fiber MPO/MTP connectors and parallel optics (40GBASE-SR4 and 100GBASE-SR4).
40 Gb/s duplex fiber solutions are promoted as offering reduced cost and installation time for quick migration to 40 Gb/s applications due to the ability to reuse the existing duplex 10 Gb/s fiber infrastructure for 40 Gb/s without having to implement MPO/MTP solutions. However, some of the concerns surrounding these non-standards based 40 Gb/s duplex fiber solutions include:
Lack of standards compliance and lack of interoperability with standards-based fiber solutions
Risk of being locked into a sole-sourced/proprietary solution that may have limited future support
BiDi and other 40 Gb/s duplex transceivers require significantly more power than standards-based solutions
Lack of application assurance due to operation outside of the optimal OM3/OM4 wavelength of 850 nm
Limited operating temperature range compared to standards-based solutions
Due to the aforementioned risks and limitations of using non-standards-based 40 Gb/s duplex fiber solutions, we recommends following industry standards and deploying 40GBASE-SR4 for 40 Gb/s applications today. While this standard requires multiple fibers using an MPO/MTP-based solution, it offers complete application assurance and interoperability, as well as overall lower power consumption.
Furthermore, TIA and IEC standards development is currently underway for wideband multimode fiber (WBMMF), which is expected to result in a new fiber type (potentially OM5 or OM4WB) that expands the capacity of multimode fiber over a wider range of wavelengths to support WDM technology. While not set in stone, the wavelengths being discussed within TIA working groups are 850, 880, 910, and 940 nm.
Unlike current 40 Gb/s duplex fiber applications, WBMMF will be a standards-based, interoperable technology that will be backwards compatible with existing OM4 fiber applications. WBMMF is expected to support unidirectional duplex 100 Gb/s fiber links using 25 Gb/s channels on 4 different wavelengths. WBMMF will also support 400 Gb/s using 25 Gb/s channels on 4 different wavelengths over 8 fibers, enabling existing MPO/MTP connectivity to be leveraged for seamless migration from current standards-based 40 Gb/s and 100 Gb/s applications to future standards-based 400 Gb/s applications.

40G Solutions: Duplex Fiber or MPO/MTP Fiber?

by http://www.fiber-mart.com

There’s been a lot of talk lately surrounding bidirectional 40 Gb/s duplex applications, or BiDi for short. Currently offered as a solution by Cisco®, BiDi runs over duplex OM3 or OM4 multimode fiber using QSFP modules and wavelength division multiplexing (WDM) technology. It features two 20 Gb/s channels, each transmitting and receiving simultaneously over two wavelengths on a single fiber strand – one direction transmitting in the 832 to 868 nanometer (nm) wavelength range and the other receiving in the 882 to 918 nm wavelength range. Avago Technologies also offers a similar QSFP BiDi transceiver.
Unidirectional 40 Gb/s duplex fiber solutions are available from Arista and Juniper. These differ from the BiDi solution in that they combine four 10 Gb/s channels at different wavelengths – 1270, 1290, 1310, and 1330 nm – over a duplex LC connector using OM3 or OM4 multimode or singlemode fiber. These unidirectional solutions are not interoperable with BiDi solutions because they use different WDM technology and operate within different wavelength ranges.
While some of the transceivers used with these 40 Gb/s duplex fiber solutions are compliant with QSFP specifications and based on the IEEE 40GBASE- LR4 standard, there are currently no existing industry standards for 40 Gb/s duplex fiber applications using multiple wavelengths over multimode fiber – either bidirectional or unidirectional. There are standards-based 40 Gb/s applications over duplex singlemode fiber using WDM technology, but standards-based 40 Gb/s and 100 Gb/s applications over multimode use multi-fiber MPO/MTP connectors and parallel optics (40GBASE-SR4 and 100GBASE-SR4).
40 Gb/s duplex fiber solutions are promoted as offering reduced cost and installation time for quick migration to 40 Gb/s applications due to the ability to reuse the existing duplex 10 Gb/s fiber infrastructure for 40 Gb/s without having to implement MPO/MTP solutions. However, some of the concerns surrounding these non-standards based 40 Gb/s duplex fiber solutions include:
Lack of standards compliance and lack of interoperability with standards-based fiber solutions
Risk of being locked into a sole-sourced/proprietary solution that may have limited future support
BiDi and other 40 Gb/s duplex transceivers require significantly more power than standards-based solutions
Lack of application assurance due to operation outside of the optimal OM3/OM4 wavelength of 850 nm
Limited operating temperature range compared to standards-based solutions
Due to the aforementioned risks and limitations of using non-standards-based 40 Gb/s duplex fiber solutions, we recommends following industry standards and deploying 40GBASE-SR4 for 40 Gb/s applications today. While this standard requires multiple fibers using an MPO/MTP-based solution, it offers complete application assurance and interoperability, as well as overall lower power consumption.
Furthermore, TIA and IEC standards development is currently underway for wideband multimode fiber (WBMMF), which is expected to result in a new fiber type (potentially OM5 or OM4WB) that expands the capacity of multimode fiber over a wider range of wavelengths to support WDM technology. While not set in stone, the wavelengths being discussed within TIA working groups are 850, 880, 910, and 940 nm.
Unlike current 40 Gb/s duplex fiber applications, WBMMF will be a standards-based, interoperable technology that will be backwards compatible with existing OM4 fiber applications. WBMMF is expected to support unidirectional duplex 100 Gb/s fiber links using 25 Gb/s channels on 4 different wavelengths. WBMMF will also support 400 Gb/s using 25 Gb/s channels on 4 different wavelengths over 8 fibers, enabling existing MPO/MTP connectivity to be leveraged for seamless migration from current standards-based 40 Gb/s and 100 Gb/s applications to future standards-based 400 Gb/s applications.