Understanding MPO- MTP fibre optic connectivity in cabling applications

by http://www.fiber-mart.com

As the quest for greater bandwidth continues and fibre optic connections within data centres and optic fibre networks increase, these challenges must be met by choosing the right type of connectivity. This is all driven by requirements for additional switching and routing, storage, virtualization, convergence, video-on-demand (VoD) and high performance cloud computing. All of these applications plus other bandwidth intensive applications increase the need for transmission speed and data volume over short distances.
Optic fibre 10G transmission systems are becoming more widely used and accepted and migration paths to 40G and 100G have been specified for optical fibre.
The IEEE 802.3ba 40G / 100G Ethernet standard provides guidance for 40G / 100G transmission with multimode fibre. OM3 and OM4 are the only multimode fibres included in the standard.
Parallel optics technology has become the transmission option of choice in many data centres and labs as it is able to support 10G, 40G, and 100G transmission. For parallel optics to work effectively, it requires the right choice of cable and connector.
Parallel optic interfaces differ from traditional fiber optic communication in that data is simultaneously transmitted and received over multiple optical fibres. In traditional (serial) optical communication, a transceiver on each end of the link contains one transmitter and one receiver. For example, on a duplex channel the transmitter on End A communicates with the receiver on End B and another optic fibre is connected between the transmitter on End B and the receiver on End A.
In parallel optical communication, the devices on either end of the link contain multiple transmitters and receivers, e.g. four transmitters on End A communicate with four receivers on End B. This spreads the data stream over the four optical fibres. This configuration would allow for the operation of a parallel optics transceiver which uses four 2.5 Gb/s transmitters to send one 10 Gb/s signal from A to B. In essence, parallel optical communication is using multiple paths to transmit a signal at a greater data rate than the individual electronics can support. This type of connectivity utilises a ribbon cable type design with all fibres aligned in a straight array, in either a 12 fibre or 24 fibre configuration.
In addition to the cable performance, the choice of physical connection interface is also important. Since parallel-optics technology requires data transmission across multiple fibres simultaneously, a multifibre connector is required. Factory terminated MPO / MTP connectors which have either 12 fibre or 24 fibre array, will support this solution. For example, a 10G system would utilise a single MPO / MTP (12 Fibre) connector between the 2 switches. Modules are placed on the end of the MPO connector to transition from a MPO connector to a 12 Fibre breakout LC duplex or SC duplex cable assembly. This enables connectivity to the switch. 40G and 100G systems require a slightly different configuration.
Difference between MPO and MTP connectors
From the outside there is very little noticeable difference between MPO and MTP connectors. Infact, they are completely compatible and inter-mateable. For example, an MTP trunk cable can plug into an MPO outlet and vice versa.
The main difference is in relation to its optical and mechanical performance. MTP is a registered trademark and design of UsConnec, and provides some advantages over a generic MPO connector. Since MPO / MTP optic fibre alignment is critical to ensure a precise connection there are some benefits in utilising the MTP connector. The MTP connector is a high performance MPO connector with multiple engineered product enhancements to improve optical and mechanical performance when compared to generic MPO connectors.
The MTP optic fibre connector has floating internal ferrule which allows two mated ferrules to maintain contact while under load. In addition, The MTP connector spring design maximizes ribbon clearance for twelve fibre and multifibre ribbon applications to prevent fibre damage.
Overall it provides a more reliable and precise connection.
In addition, it is also important when specifying an MPO/MTP system to ensure the correct polarity options and which cables and outlets have female or male pins.
Advertisements

MPO/MTP Trunk Cable Advantages

by http://www.fiber-mart.com

A specific lengths pre-assembled MTP/MPO Trunk cable with 12 or 24 fibers is delivered to data center for easy installation, because an It is impossible to manually to assemble MPO/MTP plug connector with 12 or 24 fibers on site during installation.MPO-MPO-Patch-cord-10m
The advantages of MPO/MTP Trunk cable with the following advantages
• Higher Quality
Higher quality is usually achieved through factory assembly and inspection of individual parts. A factory-prepared inspection certificate is also useful for longterm documentation and in turn quality assurance purposes.
• Minimum Skew
A crucial factor in achieving a successful parallel optical connection is keeping the signal offset (skew) between the four or ten parallel fibers to an absolute minimum. Only in this way can information be successfully re-synchronized and re-combined at its destination. Factory-assembled trunk cables allow skew to be measured, minimized and logged.
• Shorter Installation Times
Pre-assembled MPO cable systems provide plug-and-play advantages and can be inserted and set up immediately.
This reduces installation time enormously
• Better Protection
Because they are completely assembled at the factory, cables and plug connectors remain completely protected from
environmental influences. Optical fibers that lie open in splice trays are at a minimum exposed to ambient air and may age faster as a result.
• Smaller Cable Volumes
Smaller diameters can be realized in MPO cabling systems that are produced from loose tube cables. The results are
correspondingly smaller cable volumes, better conditions for acclimatization in the data center and a lower fire load.
• Lower Overall Costs
When splice solutions are used, a few factors that are not always foreseeable boost total costs: time-intensive,
equipment-intensive splicing, needs for specialty works, bulk cables, pigtails, splice trays, splicing protection, holders. In contrast, pre-assembled trunk cables not only bring technical advantages, but usually result in lower total costs than splicing solutions.

How Much Do You Know About DWDM

by http://www.fiber-mart.com

In traditional optical fiber networks, information is transmitted through optical fiber by a single lightbeam. In a wavelength division multiplexing (WDM) network, the vast optical bandwidth of a fiber is carved up into wavelength channels, each of which carries a data stream individually. The multiple channels of information (each having a different carrier wavelength) are transmitted simultaneously over a single fiber. The reason why this can be done is that optical beams with different wavelengths propagate without interfering with one another. When the number of wavelength channels is above 20 in a WDM system, it is generally referred to as Dense WDM or DWDM.
What Is DWDM
DWDM, short for dense wavelength division multiplexing, is an optical technology used to increase bandwidth over existing fiber optic backbones. DWDM works by combining and transmitting multiple signals simultaneously at different wavelengths on the same fiber. It increases the capacity of embedded fiber by assigning incoming optical signals to specific frequencies (wavelengths) with a designated frequency band and then multiplexing the resulting signals out onto one fiber. In effect, one fiber is transformed into multiple virtual fibers. So, if you were to multiplex eight OC-48 signals into one fiber, you would increase the carrying capacity of that fiber from 2.5 Gb/s to 20 Gb/s. DWDM has the ability to transport up to 80 wavelengths in what is known as the Conventional band or C band spectrum, with all 80 channels in the 1550nm region. A key advantage of DWDM is that it’s protocol- and bit-rate-independent. DWDM-based networks can transmit data in IP, ATM, SONET/SDH, and Ethernet.
Advantages of DWDM
DWDM is designed for long-haul transmission where wavelengths are packed tightly together, providing a high-capacity solution in telecom networks. In DWDM system, far more channels are possible within the same fiber and dispersion compensation can be applied. Besides, it stays completely within the C-band where attenuation and dispersion are far lower than other bands. Moreover, DWDM takes advantage of the operating window of the Erbium Doped Fiber Amplifier (EDFA) to amplify the optical channels and extend the operating range of the system to over 1500 kilometers. The use of DWDM technology has proven to be the optimal way of combining cost efficient transport with advanced functionality, which can cope with the bandwidth explosion from the access network.
DWDM Equipment
DWDM is a core technology in an optical transport network. The essential components of DWDM (DWDM Equipment) are shown in the following picture. The first one is transmitter (transmit transponder) which changes electrical bits to optical pulses. It is frequency specific and uses a narrow-band laser to generate the optical pulse. The second one is the multiplexer or demultiplexer which combines and separates discrete wavelengths respectively. The link is optical fiber that exhibits low loss and transmission performance in the relevant wavelength spectra, as well as the flat-gain optical amplifiers to boost the signal on longer spans. On the end is the receiver (receive transponder) which changes optical pulses back to electrical bits and uses wideband laser to provide the optical pulse.
fiber-mart.com provides a vast range of DWDM products to help build and expand fiber optic networks. For example, we offer DWDM MUX DEMUX modules with 50GHz/100GHz/200GHz channel spacing, DWDM OADM modules with various configurations and DWDM transceivers which can support 155Mbps to 10Gbps data transmissions.

Optical Transponder—an Important Component in WDM System

by http://www.fiber-mart.com

Introduction to Optical Transponder
Optical transponder is also referred to as WDM transponder, wavelength-converting transponder or OEO (Optical-Electrical-Optical) 3R (re-timing, re-shaping, and re-amplifying) converter, and the word “transponder” is named according to the combination between transmitter and responder. It is an important unit in WDM system which main function is to convert the wavelength and the pattern of the optical signals and amplify the optical signals for long-haul transmission. At present, the optical transponder unit is commonly used in 10G connections including SFP+ to XFP, SFP+ to SFP+ and XFP to XFP fiber connections, and 40G QSFP+ to QSFP+ connections.
Working Principle of Optical Transponder
The optical transponder is designed to automatically receive a signal, amplify it and then retransmit the signal with another wavelength, without changing the content of the signal, which enables the different system to be connected. For instance, a 10G DWDM system can be deployed on the basis of a normal 10G system if using the optical transponder to convert a 850nm signal into a 1550nm one. What’s the working principle of the optical transponder? In general, when an optical input signal passes through the optical transponder, it will be firstly converted into an electrical one. Then a logical copy of the input signal is generated that features a new amplitude and shape and is used for driving the transmitter. Finally, an optical output signal with a new wavelength would be generated, as shown in the following figure.
Wavelength Conversion Case Analysis
As mentioned above, the optical transponder unit plays an important role in WDM system, which is very welcomed when deploying a CWDM or DWDM system on the basis of a normal system. It is well known that 850nm, 1310nm or 1550nm are used in a normal system for optical signal transmission, while CWDM or DWDM wavelengths are applied in a CWDM or DWDM system. Hence, if we want to transmit the normal signals to a CWDM or DWDM system, the optical transponder should be required that enables the normal wavelengths to be converted into CWDM or DWDM ones without changing the signal data. Here shows a wavelength conversion case by using the optical transponder.
We can learn from the case that a 10G-LR 1310nm SFP+ module is connected to a 10G switch on site A, while a 10G CWDM SFP+ module working on 1610nm is used with the CWDM Mux Demux on site B. As the 10G 1310nm signal from site A is required to be transmitted to the existing CWDM system on site B, a two SFP+ ports optical transponder should be used for converting the 10G 1310nm signal into a 10G 1610nm CWDM signal. To achieve this, another 10G-LR 1310nm SFP+ module and 10G CWDM 1610nm SFP+ module should be inserted into the 10G SFP+ to SFP+ optical transponder, separately. Furthermore, fiber patch cables are required to link the two 10G-LR 1310nm SFP+ modules and two 10G CWDM 1610nm SFP+ modules together, so that a complete link for wavelength conversion can be done.
Conclusion
The optical transponder is an important component in WDM system that makes the wavelength conversion easy, so that the signal data can be transmitted from a normal system to a WDM system. For instance, with the use of the optical transponder unit, a 1310 signal from a 10G fiber optical network can be converted into a 1610 CWDM signal and transmitted to the 10G CWDM network. If you are facing the problem about wavelength conversion for connection between a normal network with a WDM network as noted above, the optical transponder is quite recommendable for you.

WHAT ARE FIBER OPTIC TRANSPONDERS?

by http://www.fiber-mart.com

1. WHAT IS FIBER OPTIC TRANSPONDER?
In optical fiber communications, a transponder is the element that sends and receives the optical signal from a fiber. A transponder is typically characterized by its data rate and the maximum distance the signal can travel.
>> The difference between a fiber optic transponder and transceiver
A transponder and transceiver are both functionally similar devices that convert a full-duplex electrical signal in a full-duplex optical signal. The difference between the two being that transceivers interface electrically with the host system using a serial interface, whereas transponders use a parallel interface to do so.
So transponders provide easier to handle lower-rate parallel signals, but are bulkier and consume more power than transceivers.
>> Major functions of a fiber optic transponder includes:
Electrical and optical signals conversions
Serialization and deserialization
Control and monitoring
2. APPLICATIONS OF FIBER OPTIC TRANSPONDER
Multi-rate, bidirectional fiber transponders convert short-reach 10 Gb/s and 40 Gb/s optical signals to long-reach, single-mode dense wavelength division multiplexing (DWDM) optical interfaces.
The modules can be used to enable DWDM applications such as fiber relief, wavelength services, and Metro optical DWDM access overlay on existing optical infrastructure.
Supporting dense wavelength multiplexing schemes, fiber optic transponders can expand the useable bandwidth of a single optical fiber to over 300 Gb/s.
Transponders also provide a standard line interface for multiple protocols through replaceable 10G small form-factor pluggable (XFP) client-side optics.
The data rates and typical protocols transported include synchronous optical network/synchronous digital hierarchy (SONET/SDH) (OC-192 SR1), Gigabit Ethernet (10GBaseS and 10GBaseL), 10 G Fibre Channel (10 GFC) and SONET G.709 forward error correction (FEC)(10.709 Gb/s).
Fiber optic transponder modules can also support 3R operation (reshape, retime, regenerate) at supported rates.
Often, fiber optic transponders are used to for testing interoperability and compatibility. Typical tests and measurements include jitter performance, receiver sensitivity as a function of bit error rate (BER), and transmission performance based on path penalty.Some fiber optic transponders are also used to perform transmitter eye measurements.
>> Major Applications of fiber optic transponder
300-pin MSA fiber optic transponders can transparently carry a native 10G LAN PHY, SONET/SDH and Fibre Channel payload with a carrier grade DWDM Optical Transport Network (OTN) interface without the need for bandwidth limitation.
Transponders offer G.709 compliant Digital Wrapper, Enhanced Forward Error Correction (FEC) and Electrical Dispersion Compensation (EDC) for advanced optical performance and management functions superior to those found in DWDM Transponder systems.
They support full C or L band tunability and is designed to interoperate with any Open DWDM line system that support 50GHz spaced wavelengths per the ITU-T grid.
Enables reach extension on SONET, Storage Area Network (SAN), Gigabit Ethernet, and dispersion limited links
Wavelength services and Metro optical access overlay
Agile Optical Networks

Best Patch Panel Cable Management Techniques

by http://www.fiber-mart.com

In the structured cabling system, a complete connectivity comprises of cable, patch panel, wall outlet and patch cord supporting all LAN applications. Numbers of cables come into or go out, in this situation where easily causes cable spaghetti. A patch panel not only performs the function of acting as the connectors, but also helps to arrange the cables in organized orders. Consequently, the well-organized patch panel cable management provides a reliable cabling system for all of today’s network applications and future-proofing networks.
Why Need Patch Panel Cable Management?
The most part is that a patch panel provides a centralized location to manage network connections. When it comes to making a move, add, or change (MAC), the patch panel cable management would effectively reduce the time and cost to perform physical changes at a patch panel in a wiring closet. Except that, it provides physical security for sensitive network connections (such as fiber links), and minimizes network downtime by allowing easy access during routine maintenance. As a last point, it provides the scalability to increase density when you need to connect a large number of devices.
patch panel cable management
High-Density Cable Management Solutions Based on Patch Panel
Patch panel cable management is involved in many components: fiber optic enclosures (wall mount or rack mount enclosure), fiber optic patch panel (LC, SC, ST, MTP, MPO), fiber optic cassette, horizontal or vertical cable management panel or cable manager. Different kinds of combinations meet the demand to effectively manage high-density structured cabling in different applications.
(1) Rack Mount Enclosure + Fiber Patch Panel
The rack mount enclosure is always loaded with LC, SC, ST, MTP/MPO fiber adapter panel to provide a pathway to connect backbone-to-backbone or backbone-to-horizontal fiber cabling. According to the application demands, different units of fiber enclosure can be selected. Generally, 1U rack enclosure can allow for 4 FAPs up to 96 fibers, 2U up to 192 fibers, and 4U up to 288 fibers. For higher cabling density, the combination of fiber enclosure and fiber patch panel provides an efficient, flexible and easy way for fiber cable management in the data center.
Rack Mount Enclosure + Fiber Patch Panel
(2) Rack Mount Enclosure + Fiber Optic Cassette
In addition to mounting with fiber optic patch panel, rack mount enclosure can also hold MTP-8, MTP-12, or MTP-24 fiber cassette to provide the interface between the MTP connector on the trunk and the LC duplex jumpers for quick connection of remote or data center applications. This mounting option is suitable for 10G to 40G or 25G to 100G application.
(3) Blank Rack Mount Modular Panel + Fiber Optic Cassette
The blank modular panel has multiple functions to provide a complete solution for routing network cabling and protecting patch cords. When 1U rack mount modular fiber enclosure panel is mounted with 4 MTP/MPO cassette, it can house the total fiber capacity up to 96 fibers. It is uniquely designed for both front and rear-mounting capabilities with easy-access cable management.
(4) Blank Rack Mount Modular Panel + Fiber Patch Panel
Except for fiber cassette, the blank rack mount modular panel with lacing bar can also hold 1U fiber patch panel to efficiently manage high-density structured cabling in data centers.
(5) MTP/MPO-LC Enclosure + Cable Management Panel
The MTP/MPO-LC enclosure is designed to connect 40/100G equipment with the existing 10G equipment in a cost-effective way. The breakout panel integrates the benefits of MPO pre-terminated breakout cabling and compact patch panels, and several groups links are dispatched in the distribution box that ensures a high-performance and reliable straight connection from 10 GbE to 40/100 GbE. The cable management panel with D-rings is used for horizontal cable management in the front of 40/100G breakout panel. This solution is perfect for 40/100G migrations in a high-density data center.
(6) Blank Multimedia Adapter Patch Panel + Cable Management Panel
Blank multimedia adapter patch panel allows customization of installation for multimedia applications requiring integration of fiber patch cables and copper cables. The inserted keystone jacks or couplers can be Cat6a, Cat6, Cat5e or Cat5. And the fiber optic adapters can be standard LC duplex, SC simplex, and MTP/MPO. So it can aggregate up to six different types of ports on demand at one time. The cable management panel with D-rings is a kind of cable organizer to keep the cables in an acceptable condition and satisfy the functional requirements of high-density network cabling.
(7) Ethernet Patch Panel + Horizontal Cable Manager with D-rings
Ethernet patch panel includes Cat5e, Cat6, or Cat7 patch panel. They are an ideal method to create a flexible, reliable and tidy cabling system for Ethernet cables. The horizontal cable manager is often used to arrange small bundles of patch cables from network switches and patch panels. It provides an economical and superior cable management solution for organizing patch cords and maintaining required bend radius.
Conclusion
Today’s data centers require a reliable, scalable, and manageable cabling infrastructure, and then the patch panel cable management solutions address these trends and facilitate the efficiency of high-density data center cabling. By the way, when purchasing the cabling infrastructure, there is no single solution that will meet all of the cable management needs. Hope this article provides you with the comprehensive patch panel cable management techniques for the successful cabling deployment in your data center.

Should We Choose Punch Down or Feedthrough Patch Panel?

by http://www.fiber-mart.com

RJ45 patch panels provide a useful solution for cable management in data centers and other high-density environments. In the market, two types are offered like punch down and feedthrough patch panel. But consumers often find it’s difficult to make a decision on which one is better. This article is going to help your dilemma.
Punch Down Patch Panel
Punch down types are available in Cat5e or Cat6 patch panel. On the front plate, RJ45 ports (usually 24 ports) are used to directly connect Ethernet copper cable. All ports are numbered for easy identification. In the rear, it’s patch panel module with color markings for punching down Ethernet cable. Color coded labels are designed for T568A and T568B wiring configurations.
How to Punch Down a Patch Panel?
If you select punch down patch panel, firstly you need to terminate all cables into the patch panel.
First, strip the outside protective jacket about 3-6 inches from the cable with cable stripping tools.
Second, after removing the cable jacket, you should separate the wire pairs. Try to straighten the ends so that you can do the termination easily.
Third, place the cable wires into the slot on the patch panel. Choose a port on the patch panel to begin terminating. Usually we start with the 1st port. Then insert each wire into its own slot. Consider whether you will use T568A or T568B configuration. Don’t leave wires exposed to much or twisted to avoid weakening signal.
Fourth, terminate the wires. Lay all wires onto the slots and double check whether the wire matches the right configuration. Use a punch down tool with 110 blade to terminate each wire individually. The 110 blade should fully cover the wire on the patch panel. Push down the tool and cut the end of wire off.
Fifth, secure the cable to the patch panel with a zip tie if there are slots on the patch panel.
Sixth, inspect the wire. Once you’ve finished terminating the wires, use a cable tester to check if all the wires are correctly terminated.
When the punching down process is completed, you can install the patch panel into the racks with screws.
Feedthrough Patch Panel
Feedthrough patch panel provides patching without punching down the wires to the ports. There are generally Cat5e and Cat6 feedthrough patch panel configured in 1U (24 ports) or in 2U size (48 ports). Each feedthrough patch panel has both RJ45 ports on the front and rear side. And ports on front side are numbered for easy identification and installation. With feedthrough patch panel, the Ethernet patch cables can be inserted into the ports directly in an easy and fast way. The patch panel is quite suitable for high-density network system, which can protect cable and improve cable management efficiency.
Feedthrough Patch Panel Installation Steps
Install the feedthrough patch panels in lay racks or communication cabinets.
First, find an empty rack space.
Second, install the panel with supplied cuphead screws.
Third, insert the Ethernet patch cables into the front and rear ports.
Fourth, after patching all cables, use cable ties to secure the cables to lacing bar.
Punch Down Patch Panel and Feedthrough Patch Panel, Which One Is Better?
To use punch down patch panel or feedthrough patch panel, people are feel confused. Some recommends traditional one because they can find , while some prefer to feedthrough. Each one has its advantages and disadvantages. To decide which one to buy, you may consider the following factors:
Cost–feedthrough patch panel is more expensive than traditional patch panel. If your budget allows, you can purchase feedthrough patch panel.
Time–From the above content, the installation steps of punching down patch panel is obviously more complicated. Especially when you have lots of Ethernet cables to be punched down, it really takes a great deal of time. Using feedthrough patch panel can save you time without punching down procedures. However, it’s another case to small network.
Network Error Possibility–During terminating wires into the punch down patch panel slots, you may match the wrong configurations. That can lead to link fault. But you don’t need worry about this issue if you use feedthrough patch panel.
Suggestions for Buying Punch Down or Feedthrough Patch Panel
Punch down patch panel requires high techniques and carefulness. For small network, you are suggested to buy traditional patch panel on condition that you’re skilled at punching down wires. For big project, feedthrough patch panel is the first choice. Both patch panels are accessible in fiber-mart.COM. Come and find your appropriate RJ45 patch panel.