40G QSFP+ Direct Attach Copper Cabling

by http://www.fiber-mart.com

In today’s network building, requiring higher speeds, greater scalability and cost-effective cabling solution is preferable. Direct Attach Cable(DAC) is a kind of optical transceiver assembly widely applied in storage area network, data center, and high-performance computing connectivity etc and high density cabling interconnect system capable of delivering an aggregate data bandwidth of 40Gb/s,therefore, It is the cost-effective way to upgrade from 10G to 40G or 40G to 40G interconnect connection.

 

40G QSFP+ Direct Attach Copper Cable (DAC) Basics

 

40G QSFP+ Direct Attach Copper Cable (DAC) is a high speed twinax cable with QSFP+ connector on either end of the cable. It is designed to meet emerging data center and high performance computing application needs for a short distance and high density cabling interconnect system capable of delivering an aggregate data bandwidth of 40Gb/s. The maximum transmission distance of QSFP+ direct attach copper cable is 10 meters, which makes the cable suitable for in-rack connections between servers and Top-of-Rack (ToR) switches because they often require shorter distances and not routed to the Main Distribution Frames.

 

 

How to Use 40G QSFP+ Direct Attach Copper Cable

 

According to the connector types on both ends. One is QSFP+ to 4 SFP+ direct attach breakout copper cable, and the other is QSFP+ to QSFP+ direct attach copper cable. In fact, it is not common for there is a third type QSFP+ direct attach copper cable called QSFP+ to 4 XFP breakout cable. For a QSFP+ to 4 SFP+ direct attach breakout copper cable, it has a QSFP+ connector on one end and four SFP+ connectors on the other end. In terms of a QSFP+ to QSFP+ direct attach copper cable, it has a QSFP+ connector on both ends of the cable. When we use a fiber optic transceiver and patch cable to establish a fiber link, we should firstly plug the transceiver to the switch and then plug the patch cable to the transceiver. But for a QSFP+ direct attach copper cable, either SFP+ connector or QSFP+ connector, before building the network, it is necessary to buy 40G DAC cables from reliable QSFP cables supplier and manufacturer.can be both directly inserted into the switch and don’t need a transceiver at all, which provides a really cost-effective solution for interconnecting high speed 40G switches to existing 10G equipment or 40G switches to 40G switches.

 

40G QSFP+ to 4 SFP+ Direct Attach Copper Cabling

 

The move from 10G to 40G Ethernet will be a gradual one. It is very likely that one may deploy switches that have 40G Ethernet ports while the servers still have 10G Ethernet ports. For that situation, we should use a QSFP+ to 4 SFP+ direct attach breakout copper cable.In 40G to 40G connection, QSFP+ to QSFP+ direct attach copper cables are suitable for very short distances and offer a highly cost-effective way to establish a 40G link between QSFP+ ports of QSFP+ switches within racks and across adjacent racks. These QSFP+ copper cables connect to a 40G QSFP port of a switch on one end and to another 40G QSFP port of a switch on the other end. It is noted that the distance between the two switches is within the cable length.  These cables connect to a 40G QSFP Port of a switch on one end and to four 10G SFP+ ports of a switch on the other end, which allows a 40G Ethernet port to be used as four independent 10G ports thus providing increased density while permitting backward compatibility and a phased upgrade of equipment. As a lower cost alternative to MTP/MPO breakouts for short reach applications up to 5 meters, it helps IT organizations achieve new levels of infrastructure consolidation while expanding application and service capabilities.

 

40G QSFP+ to QSFP+ Direct Attach Copper Cabling

 

QSFP+ to QSFP+ direct attach copper cable are suitable for very short distances and offer a highly cost-effective way to establish a 40G link between QSFP+ ports of QSFP+ switches within racks and across adjacent racks. These cables connect to a 40G QSFP port of a switch on one end and to another 40G QSFP port of a switch on the other end. Supporting similar applications to SFP+, these four-lane high speed interconnects were designed for high density applications at 10Gb/s transmission speeds per lane. One QSFP+ to QSFP+ direct attach copper cable link is equivalent to 4 SFP+ cable links, providing greater density and reduced system cost. Passive and active QSFP+ to QSFP+ direct attach copper cables are both available. With a active QSFP+ to QSFP+ direct attach copper cable assembly, the connection is capable of distances of up to 10 meters.

 

 

Why Use 40G QSFP+ Direct Attach Copper Cable (DAC)?

 

For 40G short reach applications, 40G QSFP+ direct attach copper cable provides simple and inexpensive cabling solution.

The main advantages in following.

  •  Robust
  •  Cheap
  •  Low-power Consumption
  •  Easy Operation

 

 

Conclusion

 

With the wide deployment of 40 Gigabit Ethernet, the 40G QSFP+ direct attach copper cables are becoming more and more popular due to the compact size, low power and cost-effectiveness.  Fiber-Mart supplies various kinds of high speed interconnect DAC cable assemblies including 10G SFP+ Cables, 40G QSFP+ Cables, and 120G CXP Cables. All of our direct attach cables can meet the ever growing need to cost-effectively deliver more bandwidth, and can be customized to meet different requirements. For more information, welcome to visit http://www.fiber-mart.com.or contact us .E-mail: service@fiber-mart.com

 

Introduction of Fiber Optic Attenuators

by http://www.fiber-mart.com

What is Fiber Attenuator?
Fiber optic attenuator is a passive device used to reduce the power level of an optical signal because too much light can overload a fiber optic receiver and degrade the bit error ratio (BER). To achieve the best BER, the light power must be reduced by using fiber optic attenuator. Generally, the optical attenuators are used in single-mode long-haul applications to prevent optical overload at the receiver.
Optical attenuator reduces signal power by absorbing the light, like sunglasses absorb the extra light energy. Or by scattering the light like an air gap. Fiber optic attenuators are commonly used in two scenarios:
1.Attenuators are permanently installed in a fiber optic links to properly match signal levels at transmitter and receiver.
2.In fiber optic power level testing. Attenuators are used to temporarily add a calibrated amount of signal loss in order to test the power level margins in a fiber optic system.
Types of Fiber Optic Attenuators
Optical attenuator takes a number of different forms. They are typically grouped as fixed optical attenuator and optical variable attenuator.
What is Fixed Fiber Attenuator?
Fixed fiber optic attenuator, also called fixed plug type or fixed build-out fiber attenuator, is used in fiber optic communications to reduce the optical fiber power by a certain level. Typical attenuation values are between 1 and 30 dB. Usually, it has a male plug connector at one side to allow fiber attenuator to be plugged directly into receiver equipment or adapters in patch panel, and has female type fiber optic adapter at the other side to allow the patch cords to plug in. Fixed fiber optic attenuator name is based on the connector type and the attenuation level. LC attenuator 5dB means this attenuator uses LC fiber optic connector, and it can reduce the optical fiber power level by 5dB.
What is optical variable attenuator?
Optical variable attenuator can also be made as a plug-in card. It is a part of Fiber-Mart, all-in-one multi-service transport system. This hot-swappable plug-in variable optical attenuator is an online attenuation adjustment device, only occupying one slot in the 1U/2U/4U chassis. It is applied to applications that optical power required strict control, such as to balance signal strengths in a DWDM network system. Card optical variable attenuator adopts MEMS technology and could continually and variably reduce the light intensity in the optical network and help simulate distance or actual attenuation in the fiber optic testing work. With the card design, this optical variable attenuator is easy to install and remove without any tool. The online attenuation adjustment also contributes to safer business.
How to use Fiber Optic Attenuators in data link?
For a single-mode applications, especially analog CATV systems, the most important parameter, after the correct loss value, is return loss or reflectance. Many types of attenuators (especially gap loss types) suffer from high reflectance, so they can adversely affect transmitters just like highly reflective connectors.
Choose an attenuator with good reflectance specifications, and always install the attenuator ( X in the drawing) at the receiver end of the link as shown above. This is because it’s more convenient to test the receiver power before and after attenuation or while adjusting it with your power meter at the receiver, plus any reflectance will be attenuated on its path back to the source.
Test the system power with the transmitter turned on and the optical attenuator installed at the receiver, and using an optical power meter set to the system operating wavelength. Check to see whether the power is within the specified range for the receiver.
Conclusion
Fiber optic attenuator is an essential passive component in the optical communication system. With the advancement of DWDM technology, as well as the potential to flexibly upgrade the reconfigurable optical add-drop multiplexer (ROADM), the demand for optical attenuator is sure to soar, especially for optical variable attenuator. The innovation in fiber optic industry never ceases, and fiber optic attenuator will evolve to have lower cost, faster response time and enhanced integration of hybrid with other optical communication devices.Fiber-Mart provides a wide range of fiber optical attenuator.Welcome to contact with us:product@fiber-mart.com.

Basics of OTDR (Optical Time-Domain Reflectometer)

by http://www.fiber-mart.com

OTDR, short for optical time-domain reflectometer, is an optoelectronic instrument used to characterize an optical fiber. It injects a series of optical pulses into the fiber under test and extracts, from the same end of the fiber, light that is scattered (Rayleigh backscatter) or reflected back from points along the fiber.  It can offer you an overview of the whole system you test and can be used for estimating the fiber length and overall attenuation, including splice and mated-connector losses. It can also be used to locate faults, such as breaks, and to measure optical return loss.

 

How does an OTDR work?

 

OTDR is used to test the performance of newly installed fiber links and detect problems that may exist in them. Its purpose is to detect, locate, and measure elements at any location on a fiber optic link. OTDR works like radar—it sends pulse down the fiber and looks for a return signal, creating a display called a “trace”or “signature” from the measurement of the fiber.

 

the OTDR uses a unique optical phenomena “backscattered light” to make measurements along with reflected light from connectors or cleaved fiber ends, thus to measure loss indirectly.Unlike sources and power meters, which measure the loss of the fibre optic cable plant directly, the OTDR works indirectly. The source and meter duplicate the transmitter and receiver of the fibre optic transmission link, so the measurement correlates well with actual system loss.

 

During the process of OTDR testing, the instrument injects a higher power laser or fiber optic light source pulse into a fiber from one end of the fiber cable, with the OTDR port to receive the returning information. As the optical pulse is transmitted through the fiber, part of the scattered reflection will return to the OTDR. Only useful information returned could be measured by the OTDR detector which acts as the time or curve segments of fibers at different positions. By recording the time for signals from transmission to returning and the speed of transmission in fibers, the distance thus can be calculated.

When do you need an OTDR? 

 

You can use an OTDR to locate a break or similar problem in a cable run, or to take a snapshot of fibers before turning an installation over to a customer. This snapshot, which is a paper copy of the ODTR trace, gives you a permanent record of the state of that fiber at any point in time. This can help installers when fibers have been damaged or altered after installation, proving where responsibility for the damage lies. In fact, some customers will demand OTDR testing as a condition for system acceptance.

 

Although OTDRs are not especially accurate for loss testing, they can be used to conduct loss testing on long, outdoor runs of singlemode fiber where access to both ends of the cable isn’t practical. It can also be helpful for preventive maintenance procedures, such as routine checkups on a facility’s fibers.

 

Characteristics of OTDR

 

Rayleigh scattering refers to the irregular scattering generated when the optical signals transmitting in the fiber. OTDR only measure the scattered light back on the OTDR port. The backscatter signal show the attenuation degree (loss/distance) of the optical fiber, and will be tracked as a downward curve, illustrating the power of backscatter is decreasing, this is because that both transmission signal and backscatter loss are attenuated.given the optical parameters, Rayleigh scattering power can be marked, if the wavelength is know, it is proportional with the pulse width of the signal: the longer the pulse width, the stronger backscatter power. Rayleigh scattering power is also related to the wavelength of transmitted signal: the shorter the wavelength, the power is stronger. That is to say, the backscatter loose generated by the trajectory of 1310nm will higher than that of 1550nm signals.

 

In the higher wavelength region (more than 1500nm), the Rayleigh scattering will continue to decrease, and the other one phenomenon which called infrared attenuation (or absorption) will appear to increase and cause an increase the overall attenuation values. Therefore, 1550nm wavelength is the lowest attenuation, this also explains why it is a long distance communication wavelength. Naturally, these phenomena will return to affect the OTDR. OTDR of 1550nm wavelength is also have low attenuation, so it can be used for long distance testing. While as the high attenuation wavelength 1310nm or 1625nm, OTDR testing distance is bound to be limited, because the test equipment need to test a sharp front in the OTDR trace, and the end of the spikes will quickly fall into the noise area.

 

Fresnel reflection falls into the category of discrete reflection that is caused by the individual point of the whole fibers. These points are the result of changes in reverse coefficient elements such as glass and air gap. At these points, a strong backscatter light will be reflected back. Therefore, OTDR uses the information of Fresnel reflection to locate the connection point, fiber optic terminal and breakpoints.

 

Conclusion

 

OTDRs are invaluable test instruments that can illuminate problems in your optical fiber before they bring your system to its knees. Once you’re familiar with its limitations and how to overcome them, you’ll be prepared to detect and eliminate your optical fiber events. Fiber-MART can offer OTDRs are available with a variety of fiber types and wavelengths, including single mode fiber, multimode fiber, 1310nm, 1550 nm, 1625 nm, etc.. And we also supply OTDRs of famous brands, such as AFL Noyes OFL & FLX series, JDSU MTS series, EXFO FTB series, YOKOGAWA AQ series and so on. OEM portable and handheld OTDRs (manufactured by Fiber-Mart) are also available.Pls not hesitate to contact us for any question, for more information, welcome to visit http://www.fiber-mart.com or E-mail: service@fiber-mart.com

40G QSFP+ Direct Attach Copper Cabling

In today’s network building, requiring higher speeds, greater scalability and cost-effective cabling solution is preferable. Direct Attach Cable(DAC) is a kind of optical transceiver assembly widely applied in storage area network, data center, and high-performance computing connectivity etc and high density cabling interconnect system capable of delivering an aggregate data bandwidth of 40Gb/s,therefore, It is the cost-effective way to upgrade from 10G to 40G or 40G to 40G interconnect connection.

In today’s network building, requiring higher speeds, greater scalability and cost-effective cabling solution is preferable. Direct Attach Cable(DAC) is a kind of optical transceiver assembly widely applied in storage area network, data center, and high-performance computing connectivity etc and high density cabling interconnect system capable of delivering an aggregate data bandwidth of 40Gb/s,therefore, It is the cost-effective way to upgrade from 10G to 40G or 40G to 40G interconnect connection.

 

40G QSFP+ Direct Attach Copper Cable (DAC) Basics

40G QSFP+ Direct Attach Copper Cable (DAC) is a high speed twinax cable with QSFP+ connector on either end of the cable. It is designed to meet emerging data center and high performance computing application needs for a short distance and high density cabling interconnect system capable of delivering an aggregate data bandwidth of 40Gb/s. The maximum transmission distance of QSFP+ direct attach copper cable is 10 meters, which makes the cable suitable for in-rack connections between servers and Top-of-Rack (ToR) switches because they often require shorter distances and not routed to the Main Distribution Frames.

 

How to Use 40G QSFP+ Direct Attach Copper Cable

According to the connector types on both ends. One is QSFP+ to 4 SFP+ direct attach breakout copper cable, and the other is QSFP+ to QSFP+ direct attach copper cable. In fact, it is not common for there is a third type QSFP+ direct attach copper cable called QSFP+ to 4 XFP breakout cable. For a QSFP+ to 4 SFP+ direct attach breakout copper cable, it has a QSFP+ connector on one end and four SFP+ connectors on the other end. In terms of a QSFP+ to QSFP+ direct attach copper cable, it has a QSFP+ connector on both ends of the cable. When we use a fiber optic transceiver and patch cable to establish a fiber link, we should firstly plug the transceiver to the switch and then plug the patch cable to the transceiver. But for a QSFP+ direct attach copper cable, either SFP+ connector or QSFP+ connector, before building the network, it is necessary to buy 40G DAC cables from reliable QSFP cables supplier and manufacturer.can be both directly inserted into the switch and don’t need a transceiver at all, which provides a really cost-effective solution for interconnecting high speed 40G switches to existing 10G equipment or 40G switches to 40G switches.

b5cdbf5672f444d298d0dedf7a52d027.image.500x500.jpg

40G QSFP+ to 4 SFP+ Direct Attach Copper Cabling

The move from 10G to 40G Ethernet will be a gradual one. It is very likely that one may deploy switches that have 40G Ethernet ports while the servers still have 10G Ethernet ports. For that situation, we should use a QSFP+ to 4 SFP+ direct attach breakout copper cable.In 40G to 40G connection, QSFP+ to QSFP+ direct attach copper cables are suitable for very short distances and offer a highly cost-effective way to establish a 40G link between QSFP+ ports of QSFP+ switches within racks and across adjacent racks. These QSFP+ copper cables connect to a 40G QSFP port of a switch on one end and to another 40G QSFP port of a switch on the other end. It is noted that the distance between the two switches is within the cable length.  These cables connect to a 40G QSFP Port of a switch on one end and to four 10G SFP+ ports of a switch on the other end, which allows a 40G Ethernet port to be used as four independent 10G ports thus providing increased density while permitting backward compatibility and a phased upgrade of equipment. As a lower cost alternative to MTP/MPO breakouts for short reach applications up to 5 meters, it helps IT organizations achieve new levels of infrastructure consolidation while expanding application and service capabilities.

 

40G QSFP+ to QSFP+ Direct Attach Copper Cabling

QSFP+ to QSFP+ direct attach copper cable are suitable for very short distances and offer a highly cost-effective way to establish a 40G link between QSFP+ ports of QSFP+ switches within racks and across adjacent racks. These cables connect to a 40G QSFP port of a switch on one end and to another 40G QSFP port of a switch on the other end. Supporting similar applications to SFP+, these four-lane high speed interconnects were designed for high density applications at 10Gb/s transmission speeds per lane. One QSFP+ to QSFP+ direct attach copper cable link is equivalent to 4 SFP+ cable links, providing greater density and reduced system cost. Passive and active QSFP+ to QSFP+ direct attach copper cables are both available. With a active QSFP+ to QSFP+ direct attach copper cable assembly, the connection is capable of distances of up to 10 meters.

 

Why Use 40G QSFP+ Direct Attach Copper Cable (DAC)?

For 40G short reach applications, 40G QSFP+ direct attach copper cable provides simple and inexpensive cabling solution.

The main advantages in following.

  •  Robust
  •  Cheap
  •  Low-power Consumption
  •  Easy Operation

 

 

Conclusion

With the wide deployment of 40 Gigabit Ethernet, the 40G QSFP+ direct attach copper cables are becoming more and more popular due to the compact size, low power and cost-effectiveness.  Fiber-Mart supplies various kinds of high speed interconnect DAC cable assemblies including 10G SFP+ Cables, 40G QSFP+ Cables, and 120G CXP Cables. All of our direct attach cables can meet the ever growing need to cost-effectively deliver more bandwidth, and can be customized to meet different requirements. For more information, welcome to visit www.fiber-mart.com.or contact us .E-mail: service@fiber-mart.com

 

 

Guide to SFP Transceiver Communication Standards

by http://www.fiber-mart.com

Over the years of SFP transceiver communication existence, there have been numerous different standards introduced. The great thing about SFP transceivers in networking hardware is that they allow a single piece of equipment, such as a switch, to support different wiring and transmission formats. The problem comes when trying to figure out which of the many transceiver types out there you need. There are several different types of SFP transceivers capable of supporting a multitude of communication standards, such as: CWDM/DWDM, SONET, Fibre Channel, Fast Ethernet and Gigabit Ethernet.
CWDM/DWDM SFP Transceivers
WDM, or wavelength-division multiplexing, is a type of technology that allows a transceiver to have different wavelengths assigned to it.Coarse wavelength-division multiplexing (CWDM) SFP transceivers are capable of transmitting data at eight different wavelengths ranging from 1470nm to 1610nm. CDWM SFP transceivers are color coded, to help identify which wavelength is mapped to the transceiver.Dense wavelength-division multiplexing (DWDM) SFP transceivers are available in 32 different wavelengths, and offer high-capacity bandwidth for serial optical data communications. DWDM SFP transceivers are slightly more expensive than CWDM SFP transceivers, but the more densely spaced channels allow for a greater number of wavelengths to travel over a single fiber.Both CWDM and DWDM SFP transceivers can be used to transmit data over Gigabit Ethernet, SONET and Fibre Channel.
SONET SFP Transceivers
Synchronous optical networking (SONET) technology enables the transmission of a large volume of data over long distances. SONET can be used to transmit multiple streams of data simultaneously over fiber optic mediums using laser beams and LEDs.SFP transceivers are built to transmit data over SONET at varying rates (OC-3, OC-12 and OC-48) and with different reaches (short-reach, intermediate-reach, and long-reach). SONET SFP transceivers are able to transmit data over both singlemode and multimode fiber.
Fibre Channel SFP Transceivers
Fibre Channel is a protocol which is used primarily in “Storage Area Networks”. It comes in different speeds like 1xFC, 2xFC, 4xFC, 8xFC and 16xFC. Fibre Channel was developed as a lossless protocol in a time when switches were less reliable than they are today. When using Ethernet as a protocol, frames were dropped, which created a problem for applications like data traffic. With the advent of greater technology, switches are now much more reliable; however, Fibre Channel still holds a small advantage over Ethernet when it comes to consistency and latency.Fibre Channel SFP transceivers are modules comonly used in storage area networks (SAN) and are available in 1, 2, 4, 8, 10, 16 and 20Gbps data transmission rates. Fibre Channel SFP transceivers can be used in both singlemode and multimode fiber applications.
Fast Ethernet and Gigabit Ethernet
Fast Ethernet is slowly being replaced with Gigabit Ethernet. Fast Ethernet SFP transceivers were originally designed to transmit data at 10Mbps, and eventually reached transmission speeds of 100Mbps (100Base). 100Base rate Fast Ethernet transceivers are available in the following interface types: FX, SX, BX and LX10.With the development of Gigabit Ethernet, SFP transceiver transmission rates increased to 1000Mbps (1000Base). 1000Base rate Gigabit Ethernet SFP transceivers are available in the following interface types: T, SX, LX, LX10, BX10, and the non-standard EX and ZX.
fiber-mart.com is sure to have the right SFP transceiver for your network! We carry a full line of both name-brand and affordable 100% compatible transceivers of every type your business could possibly need. Contact us today for a free consultation on which standards meet your business needs, or to discuss fiber connectivity network solutions that will best support your future business plans.

The Basics of 40GBASE-LR4 QSFP+ Transceiver

by http://www.fiber-mart.com

40GBASE QSFP+ (quad small form factor pluggable) portfolio offers customers a wide variety of high-density and low-power 40 Gigabit Ethernet connectivity options for data center, high-performance computing networks, enterprise core and distribution layers, etc. And each kind of 40GBASE QSFP+ transceiver has its special applications. 40GBASE-LR4 QSFP+ transceiver is a common 40 Gigabit Ethernet connectivity option. Here is some basic information about 40GBASE-LR4 QSFP+ transceiver.
Introduction
40GBASE-LR4 QSFP+ module supports link lengths of up to 10 kilometers over a standard pair of G.652 single-mode fiber with duplex LC connectors. The 40 Gigabit Ethernet signal is carried over four wavelengths. Multiplexing and demultiplexing of the four wavelengths are managed within the device. The letter “L” stands for long, the “R” denotes the type of interface with 64B/66B encoding and the numeral 4 indicates numeral 4 indicates that the transmission is carried out over a ribbon fiber with four singlemode fibers in every direction. Each lane has a 10 Gbit/s data rate. 40GBASE-LR4 QSFP+ transceiver modules are compliant with the QSFP+ MSA and IEEE 802.3ba 40GBASE-LR4. The picture below shows a Mellanox MC2210511-LR4 compatible 40GBASE-LR4 QSFP+ transceiver.
Two Types of 40GBASE-LR4 QSFP+ Transceiver
There are mainly two of 40GBASE-LR4 QSFP+ transceivers, 40GBASE-LR4 CWDM (coarse wavelength division multiplexing) QSFP+ transceiver and 40GBASE-LR4 PSM (parallel single-mode fiber) QSFP+ transceiver. This part mainly talks about these two 40GBASE-LR4 QSFP+ transceiver types.
40GBASE-LR4 CWDM QSFP+ transceiver, such as QSFP-40GE-LR4, contains a duplex LC connector for the optical interface. It can support transmission distance of up to 10km. A 40GBASE-LR4 CWDM QSFP+ transceiver converts 4 inputs channels of 10G electrical data to 4 CWDM optical signals by a driven 4-wavelength distributed feedback (DFB) laser array, and multiplexes them into a single channel for 40G optical transmission. Then the receiver module accepts the 40G CWDM optical signals input, and demultiplexes it into 4 individual 10G channels with different wavelengths.
40GBASE-LR4 PSM QSFP+ transceiver is a parallel single-mode optical transceiver with an MTP/MPO fiber ribbon connector. It also offers 4 independent transmit and receive channels, each capable of 10G operation for an aggregate data rate of 40G. The transmitter module accepts electrical input signals compatible with common mode logic (CML) levels. All input data signals are differential and internally terminated. The receiver module converts parallel optical input signals via a photo detector array into parallel electrical output signals. The receiver module outputs electrical signals are also voltage compatible with CML levels.
Applications
QSFP-40GE-LR4 supports 40GBASE Ethernet rate only, whereas the QSFP-40G-LR4 supports OTU3 data rate in addition to 40GBASE Ethernet rate. 40GBASE-LR4 QSFP+ transceivers are most commonly deployed between data-center or IXP sites with single mode fiber.
fiber-mart.com offers customers a wide variety of 40GBASE-LR4 QSFP+ transceivers for your high-density and low-power 40 Gigabit Ethernet connectivity options, including 40GBASE-LR4 CWDM QSFP+ transceiver and 40GBASE-LR4 PSM QSFP+ transceiver, like Cisco QSFP-40GE-LR4 40GBASE-LR4 QSFP+ transceiver. fiber-mart.com also provides wide brand compatible 40G QSFP+ transceivers, such as Brocade QSFP+, Dell QSFP+, Juniper QSFP+, Mellanox QSFP+, and HP QSFP+. Each fiber optic transceiver provided by fiber-mart.com has been tested to ensure its compatibility and interoperability. Please rest assured to buy.