Category: Fiber Transceivers
Optical transceivers, Active Optic Cables, data center switches, and cable management in data centers.
LC Fiber Connector, Adapter and Cable Assemblies
LC fiber connectors, as the most well-known representative of SFF(Small Form Factor) connector, are widely adopted in today’s LAN and data center cabling. LC connector, LC fiber adapter and cable assemblies meet the growing demand for small form factor, high-density fiber optic connectivity with simplex, duplex, single mode and multimode options. In this blog, we are going to explore the world of LC solutions.
LC Fiber Connector Types
Why on earth do we need to choose active optical cable(AOC)?
AOCs bond the fiber connection inside the transceiver end, creating a complete cable assembly much like a DAC cable, only with a 3-200-meter reach capability.
What is an AOC?
—Here is the brief definition of AOC:
Optical transceivers convert electrical data signals into blinking laser light which is then transmitted over an optical fiber. Optical transceivers have an optical connector to disconnect the fiber from the transceiver. AOCs bond the fiber connection inside the transceiver end, creating a complete cable assembly much like a DAC cable, only with a 3-200-meter reach capability. AOCs main benefit is the very long reach of optical technology, while acting like a simple, “plug & play” copper cable.Active Optical Cable assemblies have been designed to support multiple protocols. Most of them are compliant with SFP+ Ethernet and InfiniBand electrical. Here is what a typical 40 Gb/s QSFP+ (Quad Small Form-Factor Pluggable Plus) AOC supports.
Mainly, active optical cable (AOC) assemblies were invented to replace copper technology in data centers and high performance computing (HPC) applications. As we know, copper passive twinax cable is heavy and bulky, making it difficult to physically manage the datacenter. And due to the nature of electrical signals, electromagnetic interference (EMI) limits copper’s performance and reliability. Though there are so many disadvantages of copper cable, at that time, it is the main stream while the idea of AOC cables almost seems too good to be true. However, the advantages of AOC cables make the predecessors look obsolete and unsophisticated, and changes the limitation of copper passive twinax cable as well as playing an important role in high speed data transmission. Nowadays, a variety of active optical cable have been launched in the market, such as 10G SFP+ AOC, 40G QSFP+ to QSFP+ AOC,40G QSFP+ to 4 SFP+ breakout AOC ,40G QSFP+ to 8xLC breakout AOCs.
What are AOC Features and Advantages?
Compared to less expensive DAC cables, AOC offer:
- Longer reach capability than DAC 3-7 meter limits;
- 3m – 100-meters multi-mode technology;
- 100-200 meters with single-mode, Silicon Photonics;
- Lower weight, thinner cable and bend radius enabling increased airflow cooling and easier system maintenance.
Compared to more expensive optical transceivers, AOC offer:
- Dramatically lower priced solution than two optical transceivers and connectorized fiber based links;
- Lower power consumption at 2.2 Watts versus up to 4.5 Watts for optical transceivers (4-channel);
- Lower operational and maintenance cost.
Fiber-Mart supplies various kinds of high speed interconnect AOC cable assemblies including 10G SFP+ AOC, 40G QSFP+ AOC Cables,100G QSFP28 AOC, 120G CXP AOC Cables. For more information, you can visit web Fiber-MART.COM.if you have something interest, pls feel free to contact us:service@fiber-mart.com
Fiber Optic Transceiver
SFP modules allows for an optical or electrical interface when using a managed switch, unmanaged switch or media converter. These interchangeable SFP modules are available for use with copper media, multimode optical fiber
With the economic development, the communication technologies are increasingly applied to all walks of life.
Let’s talk about SFP Transceiver-—Data can usually travel only one way in a fiber optic cable, so most transceivers have two ports for bidirectional communication: one for sending and the other for receiving signals. Alternatively, a single cable can be used, but it can only send or receive data at a time but not both. The opposite end of the transceiver has a special connector for fitting it into specific models of enterprise-grade Ethernet switches, firewalls, routers and network interface cards. A modern fiber optic transceiver is a small device because it is intended to plug into the aforementioned network devices; this type of transceiver is called a small form-factor pluggable transceiver.
SFP modules allows for an optical or electrical interface when using a managed switch, unmanaged switch or media converter. These interchangeable SFP modules are available for use with copper media, multimode optical fiber, or single mode optical fiber. The optical fiber SFP modules are available in Fast Ethernet one and two fiber versions and Gigabit Ethernet one and two fiber versions.
Transceivers include transmission and receiver in a single module. The transmitter takes an electrical input and converts it to an optical output from a laser diode or LED. The light from the transmitter is coupled into the fiber with a connector and is transmitted through the fiber optic cable plant. The light from the end of the fiber is coupled to a receiver where a detector converts the light into an electrical signal which is then conditioned properly for use by the receiving equipment. And this is conversion from electricity to light, light to electricity.
They also are available with LC or SC optical connectors.A fiber optic transceiver is a device that uses fiber optical technology to send and receive data. The transceiver has electronic components to condition and encode/decode data into light pulses and then send them to the other end as electrical signals. To send data as light, it makes use of a light source, which is controlled by the electronic parts, and to receive light pulses, it makes use of a photo diode semiconductor.
As with most devices, there are many kinds and models of transceivers available, which range in size, performance and price.
Transmitting Rates and Range—Both the single-mode and multi-mode fiber optic transceiver can handle the 10G speeds. However, distance requirements are quite critical. The multi-mode optical transceivers generally have a reach of approximately 550 meters, while the single-mode transceivers can get you through 10 km, 40 km, 80 km and even farther.
Price—The optics used in the single-mode fiber are twice those used in the multimode fiber. But when installed as part of a project, the extra cost of single-mode fiber is negligible compared to multimode fiber. The fragility and increased cost to produce single-mode fiber makes it more expensive to use.
Compatibility—When it comes to issues dealing with compatibility, the two types of transceivers are not compatible. You cannot mix the multi-mode and the single-mode fiber between any two endpoints.
Power Dissipation—Multimode transceivers consume less power than single-mode transceivers, which is an important consideration especially when assessing the cost of powering and cooling a data center.
Fiber-MART is is a leading communication systems technologies integrator and optical solutions provider. We are dedicated to helping you build, connect, protect and optimize your optical infrastructure.pls feel free to contact with us for any question. e-mail: service@fiber-mart.com