How to choose the PLC splitter correctly?

by http://www.fiber-mart.com

PLC splitter is a simple passive component which plays an important role in the applications of technologies like GPON, EPON and BPON. It allows a strand of fiber optic signal being equivalently splitted into several strands of optical signal, which can support a single network interface to be shared by many subscribers. When selecting it, split ratios should always be considered. However, with the network cabling environment becoming increasingly complex, various PLC splitters with different package form factors are being invented. Now the package form factor of it is also a key factor to be considered. This post will introduce the most commonly used PLC splitters in different package form factors for your reference during selection.
Bare Fiber PLC Splitter
Bare fiber PLC splitter is commonly used in FTTx projects. It leaves bare fiber on all its ends. Thus, they can be spliced by network engineer freely according to the applications. Meanwhile, it requires the least space during cabling. They can be installed in fiber optic splicing closure easily to provide FTTH signal distribution.
Fanout PLC Splitter
Fanout PLC splitter generally uses 0.9mm buffer fiber, added with a length of ribbon fiber terminated with fanout kit behind the PLC split chip. The splitter ratios of it also come in various types. The following picture shows a 1:8 fanout version which is terminated with SC/APC connectors.
ABS PLC Splitter
ABS PLC splitter uses ABS plastic box to holding the splitter chip. The inbound fibers and distribution fibers are arranged on the same plate of this ABS box, which can provide easier and more flexible cabling. Except providing reliable protection, it can also be installed in a variety of boxes or enclosures. It is very commonly to install a it in a standard 19-inch rack unit.
LGX Box PLC Splitter
LGX Box PLC splitter looks like a MTP LGX cassette. It houses the whole splitter inside a metal box and leave fiber optic adapters for both inbound fibers and distribution fibers on its front panel. The LGX splitter can be used stand alone or be installed in the standard rack unit or fiber enclosures for better cabling.
Rack Mount PLC splitter
Rack mount PLC splitter is designed to meet the requirement of high cabling density for data centers or server room. It can be firmly installed on the data center or server racks. It is an ideal solution for high density cabling environment. Rollball can provide PLC splitter ports up to 64 in 1U 19-inch rack.

Why is GPON the Best Fiber-Optic Technology?

by http://www.fiber-mart.com

Fiber-optic communication offers a number of well-known advantages over electrical and RF transmission. Optical cables have very high bandwidth. The absence of electrical power over the line means there’s no spark hazard. The signal can’t be tapped by electromagnetic methods, so it’s more secure. Likewise, EM interference isn’t a problem. Maintenance is low, and the thin cables can be packed densely.
Several options are available for getting fiber optics close to the end user. They include active optical networks (AON) as well as passive optical networks (PON). Within PON, the main options are BPON (broadband passive optical network), GPON (gigabit passive optical network), and EPON (Ethernet passive optical network). GPON offers the fastest speeds of any current PON option.
How GPON Works
The GPON technology is based on the ITU-T G.984 standard. It’s considered the successor to BPON, which is built on G.983. A single network consists of an optical line terminal (OLT) belonging to the service provider, a splitter, and up to 64 optical network units (ONU). The ONU may or may not be on the end user’s premises, but it serves a single customer. It converts the optical signal to electrical or RF signals which the end user’s equipment can connect to.
An ONU is sometimes called an ONT (optical network terminal). An ONT is usually on the customer premises and an ONU somewhere outside, but there’s otherwise no real difference. The distance from the OLT to the ONU or ONT can be up to 20 km.
The information is sent over the short-wavelength infrared band, using wavelength division multiplexing (WDM). Downstream data goes over a 1490 nm signal, with a maximum speed of 2.488 gigabits per second. The upstream data uses the 1310 nm wavelength and can carry up to 1.244 Gb/second.
The next generation of GPON, called 10G GPON or XG-PON, offers symmetric 10 Gb/second upload and download speeds.
GPON customers are typically homes or small businesses. The technology delivers data, voice, and IP video. It may be packaged with an RF overlay at 1550 nm so that it can deliver standard cable video as well.
The Best Cases for GPON
GPON technology can be very cost-effective, provided it meets certain conditions. The OLT is relatively expensive, so the number of ONUs connected to it should be at or not much below either 32 or 64. Going above 32 ONUs requires adding a second port to the OLT, so there’s a cost jump at that point. Of course, the more users there are on an OLT, the more likely it is that service will degrade under peak use.
A PON offers low maintenance costs and has a high MTBF, since passive components don’t fail as often. Its advantage is especially strong where minimizing maintenance work is important.
The GPON design includes ATM encapsulation. This makes it convenient to deploy in networks which use an ATM backbone.
A GPON can replace existing copper-wire cabling and deliver higher data speeds with greater reliability. The question is when the improvement justifies the work of replacing it. High-density areas require less fiber and make it easier to optimize the allocation of ONUs to OLTs. With a large office building, it may make sense to put an OLT on the premises. Compact OLTs are available which don’t have to be deployed in a central office.
GPON vs. Other Optical Technologies
While GPON is growing in popularity, it isn’t the only option for bringing optical communication lines to the end user. Other technologies have their place, and a service provider needs to consider their relative costs and benefits.
AON vs. PON
Active optical networks have their own advantages. They use electrically powered switching rather than passive splitters. An AON has a greater range, as much as 70 km from the central switch to an Ethernet device. Users can be more widely dispersed. The costs are more nearly proportional to the number of users, so there’s less need to optimize end-user groupings.
GPON includes QoS features to keep latency down, but an active network allocates bandwidth more effectively and provides better latency when the user load is high. It’s easier to locate faults in an active network, since the switches can report points of failure.
An AON has higher power consumption, and active components are more prone to failure than passive ones. Costs and maintenance requirements will be higher. AONs don’t support RF overlays.
BPON, EPON, and GPON
The PON competition today is basically between EPON and GPON. BPON networks are still around and will be for a long time, but they’re a previous generation of technology. BPON is slower than GPON and offers no advantages to compensate. It’s simply a matter of how long it will take to replace all existing installations.
EPON is sometimes called GEPON (gigabit EPON), which is confusing, since people will tend to pronounce it like GPON.
EPON and GPON are both available in 10G versions, but the architectures are noticeably different.
GPON uses two different types of encapsulation. It uses GPON Encapsulation Mode, or GEM, to provide a frame-oriented service. In addition, it uses ATM encapsulation for when working in an ATM network rather than Ethernet. EPON doesn’t add any encapsulation but treats everything as Ethernet data. It’s a subject of ongoing debate whether GPON is more flexible this way or just adds complexity.
Choosing between GPON and EPON is difficult. GPON has ATM compatibility, better data speeds, and better QoS features. EPON is more economical and treats Ethernet natively.
Making the Right Choices
Getting fiber to the customer allows greater data speeds and opens new business opportunities. The questions are when to upgrade and which technology to use. The first choice is between active and passive networking. Within passive optical networking, GPON and EPON are the leading choices. Each approach has its advantages. Careful research and planning are needed to decide which will provide the greatest benefits.
Regarding the experience taken by Intraway, in projects with clients that offer services on optical fiber, it could be said that the most particular advantage of GPON networks is that a single shared optical fiber can support multiple users through the use of splitters passive optics, and this at a very low cost. On GPON networks, up to 64 ONT can share a fiber connection with the OLT. This allows the Gigabit passive optical network to be one of the first options for service providers who want to replace copper networks with fiber.
In conclusion, we could be talking about the following points to highlight about PON networks:
The provisioning of the platforms that manage the access, management and traffic of a service delivered by FTTX, being network elements that obey one of the new technologies, is much faster efficient to carry out.
Allow service providers to offer more capacity to transport bandwidth intensive applications.
Provide one of the most cost effective ways for service providers to implement fiber.
Future speed improvements can be achieved through equipment upgrades before any update on the fiber itself.

Do I need Copper or Fiber Cabling?

Data usage over the network has increased exponentially over the last few years and therefore 10GBASE-T is the minimum you would need considering the future usage. Latest network cables such as Cat6, Cat6A and Cat7 are all capable of 10GBASE-T bandwidth and therefore fully complete the Fiber optic. However, you would need to evaluate your environment before deciding  to either go with Copper or Fiber Cabling.
Fiber Cabling: Fiber cable can cover much longer distances as compared to Copper. If you network exceeds well over 300 feet, you should go with Fiber. You can go with Fiber Cabling if:
If your business environment has electromagnetic interference
If the network distance from the MDF to the end exceeds 300 feet or 90 meters. Fiber using light signal can carry data fast over longer distances. Distances can range from 550 meters (984.2 ft.) for 10-Gbps multimode and up to 40 kilometers (24.8 mi.) for single-mode cable.
Greater bandwidth requirement over long distances. Fiber is in fact cheaper to run for long distances.
Extreme temperature environment: Fiber is also less susceptible to temperature fluctuations than copper and can be submerged in water.
Data security: Carrying data over fiber is secure as it cannot be tapped during the transmission.
Copper Cabling: Copper or Network Cable can be handy if you have the followings situations:
Data runs over the shorter distances
If you have analog phones
Copper cables are easy to run as they can be easily twisted or bend without causing the damage
low bandwidth requirements
office or business where expected life of the interior fitout and office space is less than 5 years
The choice of network cabling should be based on the merits and the needs. Going for a fiber only network may be a good option if you are future proofing or you have a large capacity of bandwidth. However, newer standards of Copper cabling such as Cat6a and Cat7 have shown considerable improvements and you may want to consider it if you Network is not too big or extends upto longer distances. Contact us as your trusted Network cabling company if you have any question about the type of Network to choose.

Introduction to SFP+ Converter Module

In the previous articles, a variety of transceiver module knowledge have been introduced here. But a special type of transceiver module which called SFP+ converter module has never been covered in this blog. What is it? Today, we are going to unveil its mysterious veil.
Actually, the SFP+ converter module is not a new product in the market. As early as 2009, Cisco has launched the similar product and announced that it is an ideal option for those users who want to use the 10G XENPAK / X2 interface port of a switch with EXNPAK / X2 modules or SFP+ modules. In general, the SFP+ converter module includes 10G XENPAK to SFP+ converter module and 10G X2 to SFP+ converter module. In the previous posts, we have introduced the XENPAK and X2 modules, as well as the SFP+ modules. As we know, the XENPAK and X2 modules are the earlier 10G transceiver products, and the SFP+ is the most popular 10G transceiver now. From this point of view, it is not difficult to find that the application purpose of the SFP+ converter module is for easier and cost-saving upgrade.
In terms of the appearance, the 10G XENPAK to SFP+ converter module and 10G X2 to SFP+ converter module are with the same sizes as the XENPAK and X2 module, respectively. However, if you take a close look, you will find that the optical interfaces of them are not the same. In XENPAK and X2 module, the optical interfaces are generally designed with SC type. While in the SFP+ converter module, you may find that is a port which can plug in a SFP+ module. And this design enables the EXNPAK / X2 convert to SFP+ become available. The picture below shows us the comparisons.
Module comparison
The SFP+ converter module can convert a 10G XENPAK or X2 port into a 10G SFP+ port. This function makes customers have the flexibility to use the switch ports with the favoured module without having to upgrade the switches or modules. This flexibility is critical when the specific type of interface is not available in one or the other form factor or when customers want to use the same form factor for interfaces across multiple platforms deployed in their network.
Though today is the era of 40/100 GbE, 10GbE still accounts for a large proportion of the market. In many places, switches with XENPAK and X2 port are still used. The SFP+ converter module brings an efficient way for users to upgrade the port without changing the device. Meanwhile, the design concept of this product can be used as a reference for today’s market.

How To Decide What Goes Into A Fiber Prep Kit

Kit configuration starts with our marketing department, our staff of engineers and our sales team. Usually it’s the sales team up first explaining the need for a kit for a specific customer or they had an inspiration or a germ of an idea from a tech in the field saying he wished he had a selection of tools in an all-in-one kit. Ideas can originate just about anywhere. All suggestions are evaluated, and one of the first questions posed is there a market for this kit and will anyone care (translation, will anyone buy it)?
Kevin Costner starred in the movie, Field of Dreams. And a voice over kept saying, “if you build it they will come.” We ask, if you build it will the customers come. In the case of fiber prep tools and the need for a kit our marketing department conducted extensive research and found such a need, and with the breadth of line, fiber-mart Tools was positioned to fill it.
Because fiber is ubiquitous and more and more is being installed every day, the need for the proper tools for installation and maintenance continues to grow; therefore, the need for fiber prep tools continues to grow. So, the question then becomes, what goes into a fiber prep kit?
fiber-mart Tools has a number of Fiber Prep Kits in the line including the TK-120 Fiber Prep Kit and the TK-150 Fiber Prep Kit with Connector Cleaner, Fiber Cleaver & Visual Fault Locator. The TK-150 features all of the same tools as the TK-120 plus the VFL-150 Visual Fault Locator, FCC-250 Fiber Connector Cleaner and the FC-220 Fiber Cleaver. These kits have been on the market for a little over a year and can already be found in use around the world. But who decided what to put in the kits and how was that decision made?
Cable StrippersLooking at the tools contained in the TK-120 and the function of each explains how and why they were chosen. To start there are three cable stripping tools, the CST-1900 Round Cable Stripper, CSR-1575 Cable Strip & Ring Tool, and the FOD-2000 Fiber Optic Drop Cable Slitter. These tools allow you to open cable jackets and buffer tubes to gain access to the fiber.
MS-6 Blog 02Along the same line is the MS-6 Mid Span Slitter. This patent pending tool allows the tech to gain access to a fiber mid span for either a repair or connectorizing a fiber.
Every kit needs a fiber stripper and fiber-mart Tools manufactures the JIC-375 Fiber Optic Stripper Three Hole…THE tool for stripping fiber optic cable. And if you are exposing the inner workings of the cable you are bound to encounter Kevlar – a very tough material. A standard scissor would last a week before breaking so you need the JIC-186 Ergonomic Fiber Optic Kevlar Cutter…a tough resilient scissor specifically designed to deal with materials as tough as Kevlar.
Rounding out the kit you need a flashlight like the FL-2000, a screwdriver like the SD-61 Multi Bit Screwdriver for opening panel boxes, FW-5 fiber wipes for cleaning the fiber and a couple of pliers. We included the JIC-2288 Diagonal Cutter Pliers for use as the name implies – for cutting cables, and the JIC-842 Telecom Long Nose Pliers for grabbing or pulling cables. Now add the rugged H-90 21 Pocket Tool Case and you have the perfect kit…and that is the genesis of the fiber Prep kit.

CWDM System Testing Process

With the explosion of CWDM, it is very necessary to formulate a basic testing procedure to certifying and troubleshooting CWDM networks during installation and maintenance. Today, one of the most commonly available test methods is the use of an OTDR or power source and meter, which is capable of testing the most commonly wavelengths, 1310, 1490, 1550 and 1625nm.
This article here is based on the pre-connectorized plug and play CWDM systems that allow for connecting to test equipment in the field:
In the multiplexing module of a pre-connectorized CWDM system, wavelengths are added to the network through the filters and transmitted through the common port. The transmitted wavelengths enter the COM port in the de-multiplexing module and are dropped. All other wavelengths present at the MUX/DeMux module are went through the express port.
Most of today’s OTDRs have expanded capability for testing wavelengths in addition to 1310 and 1550 nm. The OTDR allows partial testing of such system offered in test equipment source. The OTDR allows partial testing of these systems by using the flexibility of pre-connectorized solutions. This is done by switching connections within the CWDM field terminal to allow for testing portions of the non-1310/1550 nm optical paths.
To test the 1310nm, the first step is to test the downstream portion of a system at 1310 nm by connecting the OTDR to the 1310 nm input on the CWDM MUX located at the headend. Then switch the test leads over the the upstream side and repeat. Test method is the same for both the downstream and upstream paths.
1550 nm testing is performed similarly by switching the test leads to the 1550nm ports. If additional wavelengths are present, you need to follow the procedures below:
Using the 1550 nm test wavelength, switch the OTDR connection to the 1550 nm input port on the headend MUX. Have a technician stationed at the field terminal connect the drop cable leg connectors for the 1570 nm customer to the 1550 nm port on the Mux/demux device. What should be noted is that in a play and plug solution this should not require repositioning where the drop cable passes through the OSP terminal. Test the downstream 1570 nm passive link at 1550 nm, and then repeat for the 1570 nm upstream side. When testing is complete, have the technician switch the connections for the 1570 nm drop back to the 1570 nm ports on the field MUX/DeMUX device as shown in Figure 6. Repeat this process for the 1590 nm, 1610 nm drop cables and other wavelengths present. Finally, test the 1550 nm path normally with the 1550 nm drop cable connected to the 1550nm MUX/DeMUX ports.
Since the OTDRs is able to test at 1490 or 1625 nm, the drop cables under test could be connected to the EXP port of the module and tested at 1490 or 1625 nm respective wavelength, without having to connect each to the 1550 nm port. Otherwise the procedure is the same.
As CWDM network become more and more common the data they carrying has also become critical. The procedure introduced here allows for testing modular pre-connectorized CWDM systems with standard optical test equipments. Relative channel power can be measured with a wide-band fiber optic power meter at the filter outputs or at other points in the network with the aid of a wavelength selective test device or with an optical spectrum analyzer.