Some things you must know about Fusion Splicer

What is Fusion Splicer?

Fusion splicing is the act of joining two optical fibers end-to-end using heat. The goal is to fuse the two fibers together in such a way that light passing through the fibers is not scattered or reflected back by the splice, and so that the splice and the region surrounding it are almost as strong as the intact fiber.

What is Fusion Splicer?

Fusion splicing is the act of joining two optical fibers end-to-end using heat. The goal is to fuse the two fibers together in such a way that light passing through the fibers is not scattered or reflected back by the splice, and so that the splice and the region surrounding it are almost as strong as the intact fiber. The source of heat is usually an electric arc, but can also be a laser, or a gas flame, or a tungsten filament through which current is passed. and thus the splice as well as the region surrounding it are almost as strong because virgin fiber itself.

81cc

The basic fusion splicer apparatus includes two fixtures which the fibers are mounted and two electrodes. Inspection microscope assists in the placement in the prepared fiber ends into a fusion-splicing apparatus. The fibers they fit in to the apparatus, aligned, and then fused together.

Initially, fusion splicing used nichrome wire as the heating unit to melt or fuse fibers together. New fusion-splicing techniques have replaced the nichrome wire with fractional co2 lasers, electric arcs, or gas flames to heat the fiber ends, causing them to fuse together. The little size of the fusion splice along with the development of automated fusion-splicing machines make electric arc fusion the most popular splicing approaches to commercial applications.

81c

Fusion Splicing vs Mechanical Splicing

There are two types of optic fiber splicing. One is fusion splicing we mentioned above, another is mechanical splicing. In mechanical splicing two fiber optic cables are held end to end inside a sleeve using some mechanical mechanism. In this type of technique fibers aren’t joined permanently rather just accurately hold together, so that light can easily pass through from one end to another, while in fusion splicing two fibers are fused or wielded together using an electric arc, fusion splicing is most widely used technique because it provides a reliable join with lower insertions loss and practically no back reflection. Fusion splicing is generally applied on single mode fibers but in some special cases it can also be used for multi mode fibers.

The process of fusion splicing

The process of fusion splicing normally involves heat to melt or fuse the ends of two optical fibers together. The splicing process begins by preparing each fiber end for fusion.

121

1.Stripping the fiber

Stripping is the act of removing the protective polymer coating around optical fiber in preparation for fusion splicing. The splicing process begins by preparing both fiber ends for fusion, which requires that all protective coating is removed or stripped from the ends of each fiber.

2.Cleaning the fiber

The customary means to clean bare fibers is with alcohol and wipes. However, high purity isopropyl alcohol (IPA) is hygroscopic: it attracts moisture to itself. This is problematic as IPA is either procured in pre-saturated wiper format or in (host) containers ranging for USA quart to gallon to drums. From the host container the IPA is transferred to smaller more usable containers. The hydroscopic nature of IPA is such that the highest quality at 99.9% is also the most hygroscopic. This means that moisture absorption into both the host container as well as the actual user’s container begins with the time the original container is opened and continues as amounts are transferred and removed from both.

3.Cleaving the fiber

The fiber is then cleaved using the score-and-break method so that its end-face is perfectly flat and perpendicular to the axis of the fiber. The quality of each fiber end is inspected using a microscope. In fusion splicing, splice loss is a direct function of the angles and quality of the two fiber-end faces. The closer to 90 degrees the cleave angle is the lower optical loss the splice will yield. The quality of the cleave tool being used is critical.

6s

4.Splicing the fibers

Fiber spliced, still unprotected, Current fusion splicers are either core or cladding alignment. Using one of these methods the two cleaved fibers are automatically aligned by the fusion splicer[1] in the x,y,z plane, then are fused together. Prior to the removal of the spliced fiber from the fusion splicer, a proof-test is performed to ensure that the splice is strong enough to survive handling, packaging and extended use. The bare fiber area is protected either by recoating or with a splice protector. A splice protector is a heat shrinkable tube with a strength membrane and less loss.

5.Protecting the fiber

After the fibers have been successfully fused together, the bare fiber is protected either by re-applying a coating or by using a splice protector.

565

A simplified optical splicing procedure includes:

Characteristics of placement of the splicing

A simplified optical splicing procedure includes:

Characteristics of placement of the splicing process.

Checking fiber optic splice closure content and supplementary kits.

Cable installation in oval outlet.

Cable preparation.

Organization of the fibers inside the tray.

Installing the heat-shrinkable sleeve and testing it.

81

Conclusion

Fusion splicing provides permanent low-loss connections that are performed quickly and easily, which are definite advantages over competing technologies.When it comes to optical fiber fusion splicers, no other company in the world can match Fiber-MART for innovation, speed, and performance. The entire industry-leading range of splicers offers quick termination and new standards in heater shrink time. Fiber-Mart strives for even better standards each day. Like Sumitomo Type-81C Fusion Splicer, Innovation is key. It can revolutionized on-site connectivity, speed and brought lower project costs for the migration of the network. As the major leader in optical fiber and connectivity solutions, customers can expect reliability, flexibility and unbelievable performance. After all, network infrastructure expansion becomes easy when you use state-of-the-art fusion splicer solutions.Any question or need pls feel free to contact with us. E-mail: product@fiber-mart.com.

 

 

 

 

 

Unknown's avatar

Author: Fiber-Mart.com

Fiber-Mart department with core technical knowledge provides strong innovative capability. Fiber-Mart outstanding performance can meet the need of the customer.

Leave a comment